首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural role of the conserved bacterial anticodon nuclease (ACNase) RloC is not known, but traits that set it apart from the homologous phage T4‐excluding ACNase PrrC could provide relevant clues. PrrC is silenced by a genetically linked DNA restriction‐modification (RM) protein and turned on by a phage‐encoded DNA restriction inhibitor. In contrast, RloC is rarely linked to an RM protein, and its ACNase is regulated by an internal switch responsive to double‐stranded DNA breaks. Moreover, PrrC nicks the tRNA substrate, whereas RloC excises the wobble nucleotide. These distinctions suggested that (i) T4 and related phage that degrade their host DNA will activate RloC and (ii) the tRNA species consequently disrupted will not be restored by phage tRNA repair enzymes that counteract PrrC. Consistent with these predictions we show that Acinetobacter baylyi RloC expressed in Escherichia coli is activated by wild‐type phage T4 but not by a mutant impaired in host DNA degradation. Moreover, host and T4 tRNA species disrupted by the activated ACNase were not restored by T4's tRNA repair system. Nonetheless, T4's plating efficiency was inefficiently impaired by AbaRloC, presumably due to a decoy function of the phage encoded tRNA target, the absence of which exacerbated the restriction.  相似文献   

2.
The conserved bacterial protein RloC, a distant homologue of the tRNALys anticodon nuclease (ACNase) PrrC, is shown here to act as a wobble nucleotide-excising and Zn++-responsive tRNase. The more familiar PrrC is silenced by a genetically linked type I DNA restriction-modification (R-M) enzyme, activated by a phage anti-DNA restriction factor and counteracted by phage tRNA repair enzymes. RloC shares PrrC's ABC ATPase motifs and catalytic ACNase triad but features a distinct zinc-hook/coiled-coil insert that renders its ATPase domain similar to Rad50 and related DNA repair proteins. Geobacillus kaustophilus RloC expressed in Escherichia coli exhibited ACNase activity that differed from PrrC's in substrate preference and ability to excise the wobble nucleotide. The latter specificity could impede reversal by phage tRNA repair enzymes and account perhaps for RloC's more frequent occurrence. Mutagenesis and functional assays confirmed RloC's catalytic triad assignment and implicated its zinc hook in regulating the ACNase function. Unlike PrrC, RloC is rarely linked to a type I R-M system but other genomic attributes suggest their possible interaction in trans . As DNA damage alleviates type I DNA restriction, we further propose that these related perturbations prompt RloC to disable translation and thus ward off phage escaping DNA restriction during the recovery from DNA damage.  相似文献   

3.
The conserved bacterial anticodon nuclease (ACNase) RloC and its phage-excluding homolog PrrC comprise respective ABC-adenosine triphosphatase (ATPase) and ACNase N- and C-domains but differ in three key attributes. First, prrC is always linked to an ACNase silencing, DNA restriction-modification (R-M) locus while rloC rarely features such linkage. Second, RloC excises its substrate's wobble nucleotide, a lesion expected to impede damage reversal by phage transfer RNA (tRNA) repair enzymes that counteract the nick inflicted by PrrC. Third, a distinct coiled-coil/zinc-hook (CC/ZH) insert likens RloC's N-region to the universal DNA damage checkpoint/repair protein Rad50. Previous work revealed that ZH mutations activate RloC's ACNase. Data shown here suggest that RloC has an internal ACNase silencing/activating switch comprising its ZH and DNA-break-responsive ATPase. The existence of this control may explain the lateral transfer of rloC without an external silencer and supports the proposed role of RloC as an antiviral contingency acting when DNA restriction is alleviated under genotoxic stress. We also discuss RloC's possible evolution from a PrrC-like ancestor.  相似文献   

4.
Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNAGln and tRNAGlu respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S‐phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate‐limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.  相似文献   

5.
Killer toxins from Kluyveromyces lactis (zymocin) and Pichia acaciae (PaT) were found to disable translation in target cells by virtue of anticodon nuclease (ACNase) activities on tRNAGlu and tRNAGln, respectively. Surprisingly, however, ACNase exposure does not only impair translation, but also affects genome integrity and concomitantly DNA damage occurs. Previously, it was shown that homologous recombination protects cells from ACNase toxicity. Here, we have analyzed whether other DNA repair pathways are functional in conferring ACNase resistance as well. In addition to HR, base excision repair (BER) and postreplication repair (PRR) promote clear resistance to either, PaT and zymocin. Comparative toxin sensitivity analysis of BER mutants revealed that its ACNase protective function is due to the endonucleases acting on apurinic (AP) sites, whereas none of the known DNA glycosylases is involved. Because PaT and zymocin require the presence of the ELP3/TRM9-dependent wobble uridine modification 5-methoxy-carbonyl-methyl (mcm5) for tRNA cleavage, we analyzed toxin response in DNA repair mutants additionally lacking such tRNA modifications. ACNase resistance caused by elp3 or trm9 mutations was found to rescue hypersensitivity of DNA repair defects, consistent with DNA damage to occur as a consequence of tRNA cleavage. The obtained genetic evidence promises to reveal new aspects into the mechanism linking translational fidelity and genome surveillance.  相似文献   

6.
A minimum of 37 genes corresponding to tRNAs for 17 different amino acids have been localized on the restriction endonuclease cleavage site map of theZea mays chloroplast DNA molecule. Of these, 14 genes corresponding to tRNAs for 11 amino acids are located in the larger of the two single-copy regions which separate the two inverted copies of the repeat region. One tRNA gene is in the smaller single-copy region. Each copy of the large repeated sequence contains, in addition to the ribosomal RNA genes, 11 tRNA genes corresponding to tRNAs for 8 amino acids. The genes for tRNA2 Ile and tRNAAla map in the ribosomal spacer sequence separating the 16S and 23S ribosomal RNA genes. The three isoaccepting species for the tRNAsLeu and the three for tRNAsSer, as well as the two isoaccepting species for tRNAAsn, tRNAGly, tRNAsIle, tRNAsMet, tRNAsThr, are shown to be encoded at different loci. Two independent methods have been used for the localization of tRNA genes on the physical map of the maize chloroplast DNA molecule: (a) cloned chloroplast DNA fragments were hybridized with radioactively-labelled total 4S RNAs, the hybridized RNAs were then eluted, and identified by two-dimensional polyacrylamide gel electrophoresis, and (b) individual tRNAs were32P-labelledin vitro and hybridized to DNA fragments generated by digestion of maize chloroplast DNA with various restriction endonucleases.  相似文献   

7.
Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine''s inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2''s Rad51 filament dismantling activity or Rad51''s ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments.  相似文献   

8.
9.
10.
Physical mapping of the transfer RNA genes on lambda-h80dglytsu+36   总被引:7,自引:0,他引:7  
The three Escherichia coli transfer RNA genes of the DNA of the transducing phage λ80cI857S?t68dglyTsu+36tyrTthrT (abbreviated λh80T), which specify the structures of tRNAGly2(su+36), tRNATyr2 and tRNAThr3, have been mapped by hybridizing ferritin-labeled E. coli tRNA to heteroduplexes of λh80T DNA with the DNA of the parental phage (λh80cI857S?t68) and examining the product in the electron microscope. The DNA of λh80T contains a piece of bacterial DNA of length 0·43 λ unit3 that replaces a piece of phage DNA of length 0·46 λ unit, proceeding left from B · P′ (the junction of bacterial DNA and phage DNA) (i.e. att80). A cluster of three ferritin binding sites, and thus of tRNA genes, is seen at a position of 0·24 λ unit (1·1 × 104 nucleotides) to the left of B· P′. The three tRNA genes of the cluster are separated by the unequal spacings of 260 (±30) and 140 (± 30) nucleotides, proceeding left from B·P′. The specific map positions have been identified by hybridization competition between ferritin-labeled whole E. coli tRNA with unlabeled purified tRNATyr2 and with unlabeled partially purified tRNAGly2. The central gene of the cluster is tRNATyr2. The tRNAGly2gene is probably the one furthest from B·P′. Thus, the gene order and spacings, proceeding left from B·P′, are: tRNAThr3, 260 nucleotides, tRNATry2, 140 nucleotides, tRNAGly2.  相似文献   

11.
An invertible DNA element of 6.8 kb, designated the hsd1 locus, was identified in the chromosome of Mycoplasma pulmonis. Infection of host cells with mycoplasma virus P1 revealed that the organism's restriction and modification (R-M) properties are controlled by inversion of hsd1. The nucleotide sequence of hsd1 revealed several genes, the predicted amino acids of which bear striking similarity to the subunits of the type I R-M enzymes previously found only in enteric bacteria.  相似文献   

12.
在原核生物中,硒蛋白合成需要tRNA~(Sec) (SelC)与硒代半胱氨酸合成(Sec synthase, SelA)、硒代半胱氨酸特异性延伸因子(Sec-specificelongationfactor,SelB)之间相互作用。【目的】基于大肠杆菌掺硒机器,寻找tRNA~(Sec)骨架上关键核苷酸位点,为解决硒蛋白目前面临的掺硒效率较低、产量低的问题提供新思路。【方法】以大鼠细胞质型硫氧还蛋白还原酶(thioredoxinreductase1,TrxR1)为掺硒模式蛋白为定点突变tRNA~(Sec),转化至BL21 (DE3) gor-获得阳性重组菌株(携带pET-TRSter/pSUABC’),用于表达大鼠硒蛋白TrxR1,然后使用2¢,5¢ADP-Sepharose亲和层析和凝胶过滤两步法分离纯化TrxR1,最后利用经典硒依赖型DTNB还原反应测定TrxR1的酶活,分析关键核苷酸位点,评价掺硒效率。【结果】在存在SECIS元件的前提下,当SelA、SelB、tRNA~(Sec)共表达时,与野生型相比,携带突变型tRNA~(Sec)所共表达的TrxR1酶活力呈现不同程度的降低,其中E.colitRNA~(Sec)的G18、G19这两个位点的所有的TrxR1酶活远低于野生型(10%);然而,a26和b7的酶活相对较高。【结论】E. coli tRNA~(Sec)骨架上G18和G19位点对于维持tRNA稳定性和灵活性发挥了关键作用,位点突变引起tRNA结构变化会影响tRNA~(Sec)与掺硒元件的互作,因此有望通过改造tRNA核苷酸位点来提高硒蛋白的掺硒效率。  相似文献   

13.
Clustered DNA damages are induced by ionizing radiation, particularly of high linear energy transfer (LET). Compared to isolated DNA damage sites, their biological effects can be more severe. We investigated a clustered DNA damage induced by high LET radiation (C 290 MeV u?1 and Fe 500 MeV u?1) in pBR322 plasmid DNA. The plasmid is dissolved in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers.  相似文献   

14.
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27scFEN1, encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27ScFEN1 processes most of the Okazaki fragments, while Dna2 processes only a subset.  相似文献   

15.
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.Key words: p400, chromatin remodeling, DNA repair, NuA4, H2AX, acetylation, nucleosome, tip60Damage to cellular DNA can occur through multiple pathways, including exposure to genotoxic agents, the production of endogenous reactive oxygen species or errors which arise during DNA replication. To combat this continuous assault on the genome, mammalian cells have evolved multiple DNA repair pathways. The most challenging lesions to repair are DSBs, which physically cleave the DNA strand. DSBs can occur through exposure to IR, the collapse of replication forks or during the processing of certain types of DNA damage. Over the last 20 years, a clear picture of how the cell detects and repairs DSBs has emerged.1,2 The earliest event in the cell''s response to DSBs is the rapid recruitment of the ATM kinase, followed by the phosphorylation of histone H2AX (termed γH2AX) on large chromatin domains which extend for 100''s of kilobases on either side of the DSB.3 The mdc1 scaffold protein is then recruited to γH2AX,4 providing a docking platform for the recruitment and retention of additional DNA repair proteins, including the MRN complex, the RNF8 ubiquitin ligase and the brca1 and 53BP1 proteins, onto the chromatin at DSBs.57 Eventually, this spreading of DNA repair proteins along the chromatin from the DSB leads to the formation of IRIF, which can be visualized by immunofluorescent techniques. DSBs are then repaired by NHEJ, in which broken DNA ends are directly religated, or by HR, using the undamaged sister chromatid (present during S-phase) as a template. A defining characteristic of DSB repair is the dominant role that chromatin structure plays in the detection and repair of these lesions. In this review, we will examine recent work exploring how remodeling of the chromatin structure adjacent to DSBs plays a key role in the repair of DSBs.  相似文献   

16.
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington''s disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.  相似文献   

17.
18.
RNA has attracted recent attention for its key role in gene expression and targeting by small molecules for therapeutic intervention. This work focuses towards understanding interaction of harmalol, a DNA intercalator, with RNAs of different motifs viz. single-stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G), and clover leaf tRNAphe by different spectroscopic, calorimetric, and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order poly(C)·poly(G)?>?tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with tRNAphe, (iii) significant structural changes of poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no induced Circular dichroism (CD) perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy-driven, entropy-favored with poly(C)·poly(G), while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non polyelectrolytic forces to Gibbs energy changes with poly(C)·poly(G) and tRNAphe and (vi) intercalated state of harmalol inside poly(C)·poly(G) structure as revealed from molecular docking was supported by the viscometric and ferrocyanide quenching data. All these findings unequivocally pointed out that harmalol prefers binding with poly(C)·poly(G), compared to tRNAphe and poly(A); this results serve as data for the development of RNA-based antiviral drugs.  相似文献   

19.
20.
With a model system of pBR322 plasmid DNA solution in vitro, the dose effects of radiation- induced single- and double-strand breaks (SSB and DSB) were measured and DSB was distinguished into α- and β-types. Under the condition of low scavenging capacity existing in the irradiated DNA solution, SSB and αDSB were mainly induced by hydroxyl radicals (·OH). Moreover, a certain relationship was obtained between the SSB and αDSB yields and the DNA concentration. It was found that when the DNA solution was irradiated in the presence of 2.5 mmol dm–3 mannitol, the reciprocals of G(SSB) and G(αDSB), respectively, were linearly related to the reciprocal of the DNA concentration, i.e. the competition reactions of DNA and mannitol for ·OH radicals can be described by second-order kinetics. The rate coefficients and the efficiencies of the ·OH radical inducing SSB were deduced. Also, the reaction rate coefficients and the efficiencies for the induction of αDSB from SSB by the ·OH radical transfer mechanism, were first derived from the competition kinetics. Received: 27 October 1999 / Accepted: 15 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号