首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
2.
Flexible architecture of inducible morphological plasticity   总被引:1,自引:0,他引:1  
1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.  相似文献   

3.
By having phenotypically plastic traits, many organisms optimize their fitness in response to fluctuating threats. Freshwater snails with translucent shells, e.g. snails from the Radix genus, differ considerably in their mantle pigmentation patterns, with snails from the same water body ranging from being completely dark pigmented to having only a few dark patterns. These pigmentation differences have previously been suggested to be genetically fixed, but we propose that this polymorphism is owing to phenotypic plasticity in response to a fluctuating environment. Hence, we here aimed to assess whether common stressors, including ultraviolet radiation (UVR) and predation, induce a plastic response in mantle pigmentation patterns of Radix balthica. We show, in contrast to previous studies, that snails are plastic in their expression of mantle pigmentation in response to changes in UVR and predator threats, i.e. differences among populations are not genetically fixed. When exposed to cues from visually hunting fish, R. balthica increased the proportion of their dark pigmentation, suggesting a crypsis strategy. Snails increased their pigmentation even further in response to UVR, but this also led to a reduction in pattern complexity. Furthermore, when exposed to UVR and fish simultaneously, snails responded in the same way as in the UVR treatment, suggesting a trade-off between photoprotection and crypsis.  相似文献   

4.
Animals with highly inducible traits may show no inducible response when exposed to a related but wholly novel cue. This appears to be true for the intertidal whelk Nucella lamellosa faced with a voracious introduced predator. In the laboratory, we exposed whelks to effluent from two species of predatory crab, the native red rock crab Cancer productus and the invasive European green crab Carcinus maenas. Nucella and Cancer have a long shared history in the northeast Pacific, whereas potential interaction with Carcinus began here less than 10 years ago. Although Nucella responded adaptively to Cancer effluent by increasing shell thickness and decreasing somatic growth, there was no such response to Carcinus. Furthermore, thicker shelled Nucella were less likely to be eaten by Carcinus. Because Nucella produces thicker shells when exposed to Cancer cues, its ability to respond similarly to Carcinus depends only on the coupling of the Carcinus cue to the existing developmental pathways for adaptive changes in shell form. Such coupling of latent plasticity to a novel cue -- via genetic changes or associative learning -- could explain many cases of rapid phenotypic change following a sudden shift in the environment.  相似文献   

5.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

6.
    
Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour.  相似文献   

7.
1. A key aspect of the ecology and evolution of adaptive prey responses to predator risk is the timing by which the former develop a defensive trait in response to inducing signals released by the latter. This property, called reactivity, has been shown to affect population stability and persistence. 2. Theoretically, the minimal predator density required by prey to exhibit induced defences is expected to increase with the effectiveness of the defence and decrease with its cost. Likewise, the time required for the prey population to exhibit an induced defence is expected to increase together with cost. 3. The freshwater rotifers Brachionus calyciflorus and B. havanaensis and their predator Asplanchna brightwelli were used to test the hypothesis that prey species exhibiting defences that offer a larger fitness benefit and lower fitness cost are more reactive to predator signals, in terms of requiring shorter exposure time and lower signal concentration to trigger a morphological defence reaction. 4. Our results showed that both prey species exhibited costly and effective defences after induction by predator infochemicals. Faster reactions were observed at higher levels of predator cues. Nevertheless, the observed relationship between reactivity and benefit/cost of defences did not agree with our expectations. 5. To our knowledge, this is the first study in which the timing of induction of morphological defences is experimentally assessed over a gradient of risk signals. We propose new research directions to disentangle the mechanisms and project the consequences of prey decisions at the morphological level.  相似文献   

8.
1. We examined the response to chemical cues from fish and crayfish, two predators with contrasting feeding modes, and their single and combined effect on shell morphology in the freshwater snail Radix balthica. 2. Snails were subjected to four treatments: tench (Tinca tinca), signal crayfish (Pacifastacus leniusculus), a combination of tench and signal crayfish and no predators (control). Shell shape, crushing resistance and shell thickness were quantified. We also analysed whether shape or shell thickness contributes most to crushing resistance. 3. Chemical cues from the fish induced a rounder shell shape in R. balthica, a thicker shell and a higher crushing resistance, whereas crayfish chemical cues had no effect on shell morphology, shell thickness or crushing resistance. Shell shape contributed more to crushing resistance than shell thickness. 4. The combined predator treatment showed an intermediate response between the fish and crayfish treatments. Shell roundness was reduced compared with the fish treatment, but the reduced crushing resistance that comes with a less rounded shell was compensated by an increased investment in extra shell material, exceeding that of the fish treatment. 5. Our study extends previous studies of multipredator effects on phenotypically plastic freshwater snails by showing that the snails are able to fine‐tune different elements of morphology to counter predator‐specific foraging modes.  相似文献   

9.
    
We describe one of the first examples of reciprocal phenotypic plasticity in a predator–prey system: the interaction between an inducible defence and an inducible offence. When confronted with the predatory ciliate Lembadion bullinum, the hypotrichous ciliate Euplotes octocarinatus develops protective lateral wings, which inhibit ingestion by the predator. We show that L. bullinum reacts to this inducible defence by expressing an inducible offence – a plastic increase in cell size and gape size. This counteraction reduced the effect of the defence, but did not completely neutralize it. Therefore, the defence remained beneficial for E. octocarinatus. From L. bullinum's point of view, the increase in feeding rate because of the offence was not larger than the increase in mean cell volume and apparently, did not increase the predator's fitness. Therefore, the inducible offence of L. bullinum does not seem to be an effective counter‐adaptation to the inducible defence of E. octocarinatus.  相似文献   

10.
De Meester  L.  Cousyn  C. 《Hydrobiologia》1997,360(1-3):169-175
Using a clone that responds to the presence of fishkairomones by a pronounced change in phototacticbehaviour, we determined how fast a change to morenegatively phototactic behaviour occurs in Daphnia magnaadults that are exposed to a highconcentration of fish kairomones. Kairomone exposedanimals showed an approximately linear decrease in thevalue of the phototactic index with time. Though theresponse was almost immediate, it took two hoursbefore the difference between fish-induced and controlanimals was significant. Extrapolation of the observedresponse indicates that a maximal change inphototactic behaviour, equivalent to animals that havebeen cultured in the presence of fish kairomones sincebirth, occurs after about 13 hours exposure. Weconclude that the predator-induced change in dielvertical migration of zooplankton is fast, and isfully developed in less than a day. The response timeto fish kairomones of Daphnia is shorter forphototactic behaviour than for life history traits,which may have important consequences with respect tothe evolution of trait-dependence in induced defenceresponses.  相似文献   

11.
    
Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator‐induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator‐free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator‐exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high‐throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype‐dependent manner. Proteins connected to genotype‐dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype‐dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype‐dependent and general molecular processes involved in predator‐induced phenotypic plasticity in D. magna.  相似文献   

12.
  总被引:2,自引:0,他引:2  
Stamps JA 《Ecology letters》2007,10(5):355-363
Consistent individual differences in boldness, reactivity, aggressiveness, and other 'personality traits' in animals are stable within individuals but vary across individuals, for reasons which are currently obscure. Here, I suggest that consistent individual differences in growth rates encourage consistent individual differences in behavior patterns that contribute to growth-mortality tradeoffs. This hypothesis predicts that behavior patterns that increase both growth and mortality rates (e.g. foraging under predation risk, aggressive defense of feeding territories) will be positively correlated with one another across individuals, that selection for high growth rates will increase mean levels of potentially risky behavior across populations, and that within populations, faster-growing individuals will take more risks in foraging contexts than slower-growing individuals. Tentative empirical support for these predictions suggests that a growth-mortality perspective may help explain some of the consistent individual differences in behavioral traits that have been reported in fish, amphibians, reptiles, and other animals with indeterminate growth.  相似文献   

13.
    
Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator–prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator–prey dynamics and from commonly observed eco‐evolutionary dynamics with evolving, but non‐inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号