首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The C2H2 zinc finger is the most commonly utilized framework for engineering DNA-binding domains with novel specificities. Many different selection strategies have been developed to identify individual fingers that possess a particular DNA-binding specificity from a randomized library. In these experiments, each finger is selected in the context of a constant finger framework that ensures the identification of clones with a desired specificity by properly positioning the randomized finger on the DNA template. Following a successful selection, multiple zinc-finger clones are typically recovered that share similarities in the sequences of their DNA-recognition helices. In principle, each of the clones isolated from a selection is a candidate for assembly into a larger multi-finger protein, but to date a high-throughput method for identifying the most specific candidates for incorporation into a final multi-finger protein has not been available. Here we describe the development of a specificity profiling system that facilitates rapid and inexpensive characterization of engineered zinc-finger modules. Moreover, we demonstrate that specificity data collected using this system can be employed to rationally design zinc fingers with improved DNA-binding specificities.  相似文献   

2.
Cys2His2 zinc fingers (C2H2-ZFs) comprise the largest class of metazoan DNA-binding domains. Despite this domain''s well-defined DNA-recognition interface, and its successful use in the design of chimeric proteins capable of targeting genomic regions of interest, much remains unknown about its DNA-binding landscape. To help bridge this gap in fundamental knowledge and to provide a resource for design-oriented applications, we screened large synthetic protein libraries to select binding C2H2-ZF domains for each possible three base pair target. The resulting data consist of >160 000 unique domain–DNA interactions and comprise the most comprehensive investigation of C2H2-ZF DNA-binding interactions to date. An integrated analysis of these independent screens yielded DNA-binding profiles for tens of thousands of domains and led to the successful design and prediction of C2H2-ZF DNA-binding specificities. Computational analyses uncovered important aspects of C2H2-ZF domain–DNA interactions, including the roles of within-finger context and domain position on base recognition. We observed the existence of numerous distinct binding strategies for each possible three base pair target and an apparent balance between affinity and specificity of binding. In sum, our comprehensive data help elucidate the complex binding landscape of C2H2-ZF domains and provide a foundation for efforts to determine, predict and engineer their DNA-binding specificities.  相似文献   

3.
4.
To improve the DNA hydrolytic activity of the zinc finger nuclease, we have created a new artificial zinc finger nuclease (ZWH4) by connecting two distinct zinc finger domains possessing different types of Zn(II) binding sites (Cys2His2- and His4-types). The overall fold of ZWH4 is similar to that of the wild-type Sp1 zinc finger (Sp1(zf123)) as revealed by circular dichroism spectroscopy. The gel mobility shift assay demonstrated that ZWH4 binds to the GC box DNA, although the DNA-binding affinity is lower than that of Sp1(zf123). Evidently, ZWH4 hydrolyzes the covalently closed circular plasmid DNA (form I) containing the GC box (pBSGC) to the linear duplex DNA (form III) in the presence of a higher concentration (50 times) of the protein than DNA for a 24-h reaction. Of special interest is the fact that the novel mixed zinc finger protein containing the Cys2His2- and His4-type domains was first created. The present results provide the useful information for the redesign strategy of an artificial nuclease based on the zinc finger motif.  相似文献   

5.
6.
7.
Most Cys2His2 zinc finger proteins contain tandem arrays of metal binding domains. The tandem nature of these arrays suggests that metal binding by these domains may not be independent but rather that metal binding may occur in a cooperative manner. This is especially true in light of the crystal structure of a three zinc finger array bound to DNA that revealed several types of interactions between domains. To address this question, peptides containing two tandem domains have been prepared. While metal binding studies do show that the two finger peptide has a metal ion affinity about threefold higher than that for a single domain peptide with the same sequence, additional studies reveal that this behavior is due to increased single site affinities in the context of the two domain peptide rather than to cooperativity. These studies indicate that domains of this type are independent of one another with regard to metal binding, at least in the absence of DNA. This observation has implications with regard to the question of whether the activities of proteins of this class might be modulated by available zinc concentrations.  相似文献   

8.
Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions -1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure-function relationships of the existing zinc finger-DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.  相似文献   

9.
10.
11.
12.
Two mutants of the zinc finger peptide Xfin-31 (Ac-YKCGLCERSFVEKSALSRHQRVHKN-CONH2) containing alterations to the conserved hydrophobic core have been constructed and their zinc-bound structures investigated by 1H NMR techniques. In the first (Xfin-31B) a double mutation R8F/F10G places the conserved core aromatic residue at position 8 rather than position 10. In the second (Xfin-31C), Phe-10 is replaced by Leu. A qualitative analysis of 1H chemical shifts, NOE connectivities and coupling constants indicates that the global folds of both mutants are similar to that of the wild-type protein. However, amide exchange rates suggest that the F10L mutant is much less stable than either the wild-type or the R8F/F10G mutant.  相似文献   

13.
14.
We have exploited emulsion-based in vitro compartmentalization (IVC) to devise a method for the selection of zinc finger proteins (ZFPs) on the basis of their DNA-binding specificity. A library of ZFPs fused to a C-terminal peptide tag is encoded by a set of DNA cassettes that are prepared wholly in vitro. In addition to the ZFP gene, each DNA cassette also carries a given DNA target binding site sequence for which one wishes to isolate ZFP binders. An aliquot of the library is added to bacterial S30 extract and emulsified in mineral oil so that most of the aqueous droplets contain, on average, no more than one gene. If an intra-compartmentally expressed ZFP binds specifically to its encoding DNA via the target binding site, the complex can be purified by affinity capture via the peptide tag after breaking the emulsion, thus rescuing the gene. We present proof-of-principle for this IVC selection method by selecting a specific high-affinity ZFP gene from a high background of a related gene. We also propose that high-affinity ZFPs can be used as genotype-phenotype linkages to enable selection of other proteins using IVC.  相似文献   

15.
BACKGROUND: Several methods have been developed for creating Cys2His2 zinc finger proteins that recognize novel DNA sequences, and these proteins may have important applications in biological research and gene therapy. In spite of this progress with design/selection methodology, fundamental questions remain about the principles that govern DNA recognition. One hypothesis suggests that recognition can be described by a simple set of rules--essentially a "recognition code"--but careful assessment of this proposal has been difficult because there have been few structural studies of selected zinc finger proteins. RESULTS: We report the high-resolution cocrystal structures of two zinc finger proteins that had been selected (as variants of Zif268) to recognize a eukaryotic TATA box sequence. The overall docking arrangement of the fingers within the major groove of the DNA is similar to that observed in the Zif268 complex. Nevertheless, comparison of Zif268 and the selected variants reveal significant differences in the pattern of side chain-base interactions. The new structures also reveal side chain-side chain interactions (both within and between fingers) that are important in stabilizing the protein-DNA interface and appear to play substantial roles in recognition. CONCLUSIONS: These new structures highlight the surprising complexity of zinc finger-DNA interactions. The diversity of interactions observed at the protein-DNA interface, which is especially striking for proteins that were all derived from Zif268, challenges fundamental concepts about zinc finger-DNA recognition and underscores the difficulty in developing any meaningful recognition code.  相似文献   

16.
BACKGROUND: Several strategies have been reported for the design and selection of novel DNA-binding proteins. Most of these studies have used Cys(2)His(2) zinc finger proteins as a framework, and have focused on constructs that bind DNA in a manner similar to Zif268, with neighboring fingers connected by a canonical (Krüppel-type) linker. This linker does not seem ideal for larger constructs because only modest improvements in affinity are observed when more than three fingers are connected in this manner. Two strategies have been described that allow the productive assembly of more than three canonically linked fingers on a DNA site: connecting sets of fingers using linkers (covalent), or assembling sets of fingers using dimerization domains (non-covalent). RESULTS: Using a combination of structure-based design and phage display, we have developed a new dimerization system for Cys(2)His(2) zinc fingers that allows the assembly of more than three fingers on a desired target site. Zinc finger constructs employing this new dimerization system have high affinity and good specificity for their target sites both in vitro and in vivo. Constructs that recognize an asymmetric binding site as heterodimers can be obtained through substitutions in the zinc finger and dimerization regions. CONCLUSIONS: Our modular zinc finger dimerization system allows more than three Cys(2)His(2) zinc fingers to be productively assembled on a DNA-binding site. Dimerization may offer certain advantages over covalent linkage for the recognition of large DNA sequences. Our results also illustrate the power of combining structure-based design with phage display in a strategy that assimilates the best features of each method.  相似文献   

17.
Recent studies provide a glimpse of future potential therapeutic applications of custom-designed zinc finger proteins in achieving highly specific genomic manipulation. Custom-design of zinc finger proteins with tailor-made specificity is currently limited by the availability of information on recognition helices for all possible DNA targets. However, recent advances suggest that a combination of design and selection method is best suited to identify custom zinc finger DNA-binding proteins for known genome target sites. Design of functionally self-contained zinc finger proteins can be achieved by (a) modular protein engineering and (b) computational prediction. Here, we explore the novel functionality obtained by engineered zinc finger proteins and the computational approaches for prediction of recognition helices of zinc finger proteins that can raise our ability to re-program zinc finger proteins with desired novel DNA-binding specificities.  相似文献   

18.
The C‐terminal three‐Cys2His2 zinc‐finger domain (TZD) of mouse testis zinc‐finger protein binds to the 5′‐TGTACAGTGT‐3′ at the Aie1 (aurora‐C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A Kd value of ~10?8 M was obtained from surface plasmon resonance analysis for the TZD‐DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical ββα fold. On binding to DNA, chemical shift perturbations and the R2 transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5′‐ATATGTACAGTGTTAT‐3′, are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence‐specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions ?1, 2, 3, and 6 of α‐helices in fingers 1 and 2. The DNA sequence and nonsequence‐specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein–DNA recognition. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The high-resolution three-dimensional structure of a synthetic 57-residue peptide comprising the double zinc finger of the human enhancer binding protein MBP-1 has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1280 experimental restraints. A total of 30 simulated annealing structures were calculated. The backbone atomic root-mean-square distributions about the mean coordinate positions are 0.32 and 0.33 A for the N- and C-terminal fingers, respectively, and the corresponding values for all atoms, excluding disordered surface side chains, are 0.36 and 0.40 A. Each finger comprises an irregular antiparallel sheet and a helix, with the zinc tetrahedrally coordinated to two cysteines and two histidines. The overall structure is nonglobular in nature, and the angle between the long axes of the helices is 47 +/- 5 degrees. The long axis of the antiparallel sheet in the N-terminal finger is approximately parallel to that of the helix in the C-terminal finger. Comparison of this structure with the X-ray structure of the Zif-268 triple finger complexed with DNA indicates that the relative orientation of the individual zinc fingers is clearly distinct in the two cases. This difference can be attributed to the presence of a long Lys side chain in the C-terminal finger of MBP-1 at position 40, instead of a short Ala or Ser side chain at the equivalent position in Zif-268. This finding suggests that different contacts may be involved in the binding of the zinc fingers of MBP-1 and Zif-268 to DNA, consistent with the findings from methylation interference experiments that the two fingers of MBP-1 contact 10 base pairs, while the three fingers of Zif-268 contact only 9 base pairs.  相似文献   

20.
In previous studies, we have developed a technology for the rapid construction of novel DNA-binding proteins with the potential to recognize any unique site in a given genome. This technology relies on the modular assembly of modified zinc finger DNA-binding domains, each of which recognizes a three bp subsite of DNA. A complete set of 64 domains would provide comprehensive recognition of any desired DNA sequence, and new proteins could be assembled by any laboratory in a matter of hours. However, a critical parameter for this approach is the extent to which each domain functions as an independent, modular unit, without influence or dependence on its neighboring domains. We therefore examined the detailed binding behavior of several modularly assembled polydactyl zinc finger proteins. We first demonstrated that 80 modularly assembled 3-finger proteins can recognize their DNA target with very high specificity using a multitarget ELISA-based specificity assay. A more detailed analysis of DNA binding specificity for eight 3-finger proteins and two 6-finger proteins was performed using a target site selection assay. Results showed that the specificity of these proteins was as good or better than that of zinc finger proteins constructed using methods that allow for interdependency. In some cases, near perfect specificity was achieved. Complications due to target site overlap were found to be restricted to only one particular amino acid interaction (involving an aspartate in position 2 of the alpha-helix) that occurs in a minority of cases. As this is the first report of target site selection for designed, well characterized 6-finger proteins, unique insights are discussed concerning the relationship of protein length and specificity. These results have important implications for the design of proteins that can recognize extended DNA sequences, as well as provide insights into the general rules of recognition for naturally occurring zinc finger proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号