首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Land-use changes and associated deteriorations in water quality are cited as major drivers of marine ecosystem change, and can modify community abundance and diversity on coral reefs. This study uses palaeoecological data derived from a mid-Holocene age coral reef in the Wet Tropics region of Australia's Great Barrier Reef to develop a record of coral community composition and diversity, from a period that significantly pre-dates European settlement in the region. Major changes in catchment sediment and nutrient yields since European settlement have been documented, and thus the data presented provides a baseline against which to compare contemporary ecological datasets. Natural variations in coral assemblage composition, as preserved in core records, clearly occurred in this mid-Holocene reef and were associated with the reef shallowing to sea level as it accreted vertically. Comparisons between modern and mid-Holocene coral community data from equivalent water depths did not reveal marked shifts in coral community composition and diversity, suggesting the long-term persistence of a resilient coral assemblage over these time periods.  相似文献   

2.
Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community-scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m–2 day–1, 1.96 to 8.10 g O2 m–2 24 h–1, and 0.02 to 2.0 g CaCO3 m–2 day–1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.  相似文献   

3.
4.
The short-term temporal dynamics of phytoplankton composition was compared among coral reef waters, the adjacent ocean and polluted harbour water from July until October along the south-western coast of Curaçao, southern Caribbean. Temporal variations in phytoplankton pigment 'fingerprints' (zeaxanthin, chlorophyll b, 19'-hexanoyloxyfucoxanthin, fucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll c2 and c3 relative to chlorophyll a) in the ocean were also observed in waters overlying the reef. However, with respect to specific pigments and algal-size distribution, the algal composition in reef waters was usually slightly different from that in the oceanic water. Phytoplankton biomass (chlorophyll a) was either higher or lower than in the oceanic water. The relative amount of fucoxanthin and peridinin was usually higher, and the relative and absolute amount of zeaxanthin was significantly lower than in oceanic water. Zeaxanthin-containing Synechococci were significantly reduced in reef water. Average algal cell size increased from the open water to the reef and the harbour entrance. Large centric diatoms (>20 m Ø) were better represented in reef than in oceanic water. In reef-overlying waters, the nitrate and nitrite concentrations were higher than in oceanic water. In front of the town, anthropogenic eutrophication (sewage discharge and ground water seepage) resulted in higher NH4, NO3 and PO4 concentrations than at other reef stations. This concurred with significantly enhanced phytoplankton biomass (chlorophyll a), chlorophyll c2 and peridinin amounts at Town Reef compared with the other reef stations. Polluted harbour water usually showed the highest phytoplankton biomass of all stations, dominated by diatoms and dinoflagellates. Conditions in reef waters and harbour water promoted the occurrence and the relative abundance of diatoms and dinoflagellates. Harbour water did not influence the phytoplankton composition and biomass at reef stations situated >5 km away from the harbour entrance. We conclude that phytoplankton undergoes a shift in algal composition during transit over the reef. The dominant processes appear to be selective removal of zeaxanthin-containing Synechococcus (by the reef benthos) and (relative) increase in diatoms and dinoflagellates. The difference in the phytoplankton composition between reef and oceanic waters tends to increase with decreasing dilution of reef water with ocean water.  相似文献   

5.
Coral Reefs - The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3...  相似文献   

6.

In a time of unprecedented ecological change, understanding natural biophysical relationships between reef resilience and physical drivers is of increasing importance. This study evaluates how wave forcing structures coral reef benthic community composition and recovery trajectories after the major 2015/2016 bleaching event in the remote Chagos Archipelago, Indian Ocean. Benthic cover and substrate rugosity were quantified from digital imagery at 23 fore reef sites around a small coral atoll (Salomon) in 2020 and compared to data from a similar survey in 2006 and opportunistic surveys in intermediate years. Cluster analysis and principal component analysis show strong separation of community composition between exposed (modelled wave exposure > 1000 J m−3) and sheltered sites (< 1000 J m−3) in 2020. This difference is driven by relatively high cover of Porites sp., other massive corals, encrusting corals, soft corals, rubble and dead table corals at sheltered sites versus high cover of pavement and sponges at exposed sites. Total coral cover and rugosity were also higher at sheltered sites. Adding data from previous years shows benthic community shifts from distinct exposure-driven assemblages and high live coral cover in 2006 towards bare pavement, dead Acropora tables and rubble after the 2015/2016 bleaching event. The subsequent recovery trajectories at sheltered and exposed sites are surprisingly parallel and lead communities towards their respective pre-bleaching communities. These results demonstrate that in the absence of human stressors, community patterns on fore reefs are strongly controlled by wave exposure, even during and after widespread coral loss from bleaching events.

  相似文献   

7.
Summary Ten small isolated corals were selected as units, of habitat in each of two nearby reef sites-a lagoon and a reef slope. On six occasions over two years we collected all fishes resident in each of these corals. Collections yielded 827 fishes of 64 species from the lagoon and 525 fishes of 66 species from the slope, but at each site 12 common species comprised over 80% of the fishes collected. We examined the distribution of species of fishes among units of habitat to assess the extent to which partitioning of habitat was being carried out. Results are compared with others previously reported from a reef flat site. Species discriminated among different types of habitat offered, but to a different degree in each site. Discrimination was most pronounced at the slope site where 7 of the 12 commonest species did not occur in all three types of habitat offered, and least at the lagoon site where no common species failed to occupy both types of habitat offered. No temporal partitioning of habitat could be demonstrated. Fish did not distribute themselves among units of habitat of one type by means of precise microhabitat discrimination. No pair of species in either site could be shown to mutually avoid, or exclude one another from habitat units. At all three sites, chance patterns of recruitment and loss overwhelmingly determined species composition of the groups of fishes coexisting in single habitat units. The significance of these results for our understanding of the ecology of coral reef fishes is discussed.  相似文献   

8.
Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms.  相似文献   

9.
Patchiness and composition of coral reef demersal zooplankton   总被引:1,自引:0,他引:1  
Zooplankton samples were collected weekly for a full year withdemersal traps on a coral reef off the west coast of Barbados.There was a marked temporal variability in weekly catches bothin terms of abundance and biomass. Patchiness occurred at allsampling frequencies from 2 to 26 weeks, but spectral analysisindicated a variance shift at a frequency of 8–10 weeksAggregations of the two most abundant taxa, the copepoditesand the microzooplankton, occurred at 8–12 week intervalsand significant differences in abundance and biomass were foundbetween mean bimonthly zooplankton catches Lagged cross-correlationsat 7 and 11 weeks between chlorophyll and microzooplankton andcopepodites suggest that aggregations are connected to cyclesof primary production. There was a negative correlation betweenzooplankton abundance and surface water salinity in 8 of 16taxa Copepods were the most abundant taxon overall. Microzooplanktonand copepodites comprised 96% of the abundance and 66% of thebiomass Decreases in taxonomic richness and in diversity wereassociated with patchiness of small-sized copepodites and microzooplankton,suggesting that composition was altered and stability temporarilylessened during peaks of abundance  相似文献   

10.
Although phase shifts on coral reefs from coral-dominated to algal-dominated communities have been attributed to the effects of increased nutrient availability due to eutrophication and reduced herbivore abundance due to overfishing and disease, these factors have rarely been manipulated simultaneously. In addition, few studies have considered the effects of these factors on benthic, filamentous cyanobacteria (blue-green algae) as well as macroalgae. We used a combination of herbivore-exclusion cages and nutrient enrichment to manipulate herbivore abundance and nutrient availability, and measured the impacts of these treatments on macroalgal and cyanobacterial community structure. In the absence of cages, surface cover of the cyanobacterium Tolypothrix sp. decreased, while surface cover of the cyanobacteria Oscillatoria spp. increased. Cyanobacterial cover decreased in partial cages, and Tolypothrix sp. cover decreased further in full cages. Lower cyanobacterial cover and biomass were correlated with higher macroalgal cover and biomass. Dictyota bartayresiana dominated the partial cages, while Padina tenuis and Tolypiocladia glomerulata recruited into the full cages. Palatability assays demonstrated that herbivore-exclusion shifted macroalgal species composition from relatively unpalatable to relatively palatable species. Nutrient enrichment interacted with herbivore exclusion to increase the change in cover of D. bartayresiana in the uncaged and fully caged plots, but did not affect the final biomass of D. bartayresiana among treatments. Nutrient enrichment did not significantly affect the cover or biomass of any other taxa. These results stress the critical role of herbivory in determining coral reef community structure and suggest that the relative palatabilities of dominant algae, as well as algal growth responses to nutrient enrichment, will determine the potential for phase shifts to algal-dominated communities.  相似文献   

11.
Zooplankton were 3–8 times more abundant during the day near the surface than elsewhere in the water column over a 1–2.4 m deep back reef in Moorea, French Polynesia. Zooplankton were also significantly more abundant near the surface at night although gradients were most pronounced under moonlight. Zooplankton in a unidirectional current became concentrated near the surface within 2 m of departing a well-mixed trough immediately behind the reef crest, indicating that upward swimming behavior, rather than near-bottom depletion by reef planktivores, was the proximal cause of these gradients. Zooplankton were highly enriched near the surface before and after a full lunar eclipse but distributed evenly throughout the water column during the eclipse itself supporting light as a proximal cue for the upward swimming behavior of many taxa. This is the first investigation of the vertical distribution of zooplankton over a shallow back reef typical of island barrier reef systems common around the world. Previous studies on deeper fringing reefs found zooplankton depletion near the bottom but no enrichment aloft. In Moorea, where seawater is continuously recirculated out the lagoon and back across the reef crest onto the back reef, selection for upward swimming behavior may be especially strong, because the surface serves both as a refuge from predation and an optimum location for retention within the reef system. Planktivorous fish and corals that can forage or grow even marginally higher in the water column might have a substantial competitive advantage over those nearer the bottom on shallow reefs. Zooplankton abundance varied more over a few tens of centimeters vertical distance than it did between seasons or even between day and night indicating that great care must be taken to accurately assess the availability of zooplankton as food on shallow reefs.  相似文献   

12.
The physical structure of coral reefs plays a critical role as a barrier to storm waves and tsunamis and as a habitat for living reef-building and reef-associated organisms. However, the mechanical properties of reef substrate (i.e. the non-living benthos) are largely unknown, despite the fact that substrate properties may ultimately determine where organisms can persist. We used a geo-mechanical technique to measure substrate material density and strength over a reef hydrodynamic gradient. Contrary to expectation, we found a weak relationship between substrate strength and wave-induced water flow: flow rates decline sharply at the reef crest, whereas substrate properties are relatively constant over much of the reef before declining by almost an order of magnitude at the reef back. These gradients generate a novel hump-shaped pattern in resistance to mechanical disturbances for live corals, where colonies closer to the back reef are prone to dislodgement because of poorly cemented substrate. Our results help explain an intermediate zone of higher taxonomic and morphological diversity bounded by lower diversity exposed reef crest and unstable reef back zones.  相似文献   

13.
The Indo-Australian Archipelago supports the world's richest coral reef biodiversity hotspot. Traditional hypotheses that account for such exceptional biodiversity have highlighted the importance of environmental variables such as habitat area and energy input. Recently, however, an additional explanation has been proposed based on geometric constraints in the placement of geographical ranges within a bounded domain, which cause a mid-domain peak in species richness; the mid-domain effect (MDE). Here, for the first time, we examine the relative importance of area, energy and MDE jointly on species richness patterns. Model selection indicates that the best model incorporates MDE and reef area, but no energy effect; moreover, this best-fit model captures all major features of reef fish and coral species richness patterns. Habitat area is the major environmental factor influencing species richness. The prevention of further fragmentation and loss of habitat area is of critical importance for the conservation of coral reef biodiversity.  相似文献   

14.
Coral Reefs - A paramount challenge in coral reef ecology is to estimate the abundance and composition of the communities residing in such complex ecosystems. Traditional 2D projected surface cover...  相似文献   

15.

Some reef corals form stable, dominant or codominant associations with multiple endosymbiotic dinoflagellate species (family Symbiodiniaceae). Given the immense genetic and physiological diversity within this family, Symbiodiniaceae community composition has the potential to impact the nutritional physiology and fitness of the cnidarian host and all associated symbionts. Here we assessed the impact of the symbiont community composition on the metabolome of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i, where different colonies can be dominated by stress-tolerant Durusdinium glynnii or stress-sensitive Cladocopium spp. Based on our existing knowledge of these symbiont taxa, we hypothesised that the metabolite profile of D. glynnii-dominated corals would be consistent with poorer nutritional support of the host relative to those corals dominated by Cladocopium spp. However, comparative metabolite profiling revealed that the metabolite pools of the host and symbiont were unaffected by differences in the abundance of the two symbionts within the community. The abundance of the individual metabolites was the same in the host and in the endosymbiont regardless of whether the host was populated with D. glynnii or Cladocopium spp. These results suggest that coral-dinoflagellate symbioses have the potential to undergo physiological adjustments over time to accommodate differences in their resident symbionts. Such mechanisms may involve host heterotrophic compensation (increasing the level of nutrition generated by feeding relative to delivery from the algae), dynamic regulation of metabolic pathways when exchange of metabolites between the organisms differs, and/or modification of both the type and quantity of metabolites that are exchanged. We discuss these adjustments and the implications for the physiology and survival of reef corals under changing environmental regimes.

  相似文献   

16.
Ribosomal tag libraries based on DNA and RNA in coral reef sediment from Hawaii show the microbial community to be dominated by the bacterial phyla Proteobacteria, Firmicutes and Actinobacteria, the archaeal order Nitrosopumilales and the uncultivated divisions Marine Group III (Euryarchaeota) and Marine Benthic Group C (Crenarchaeota). Operational taxonomic units (OTUs) number in the high thousands, and richness varies with site, presence or absence of porewater sulfide (sediment depth), and nucleotide pool. Rank abundance curves of DNA-based libraries, but not RNA-based libraries, possess a tail of low abundance taxa, supporting the existence of an inactive 'rare' biosphere. While bacterial libraries from two oxic samples differ markedly, those from two anoxic (sulfidic) samples are similar. The four dominant bacterial OTUs are members of genera that include pathogens, but are found in marine environments, and include facultative anaerobes, i.e. dissimilatory nitrate reducers and denitrifiers. This may explain their abundance in both oxic and anoxic samples. A numerous archaeon is closely related to the lithoautotrophic ammonia oxidizer Nitrosopumilus maritimus. Known bacterial ammonia oxidizers are essentially absent, but bacterial nitrite oxidizers are abundant. Although other studies of this reef found evidence for anaerobic ammonia oxidizers, primer bias rendered that clade invisible to this study.  相似文献   

17.
Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.  相似文献   

18.
What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2 = 0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2 = 0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species‐specific abundance and migration patterns and/or seascape and historical factors.  相似文献   

19.
During recent decades, there have been numerous attempts to identify the key determinants of parasite communities and several influential variables have been clarified at either infra-, component or compound community scales. However, in view of the possible complexity of interactions among determinants, the commonly-used exploratory and statistical modelling techniques have often failed to find meaningful ecological patterns from such data. Moreover, quantitative assessments of factors structuring species richness, abundance, community structure and species associations in parasite communities remain elusive. Recently, because they are ideally suited for the analysis of complex and highly interactive data, there has been increasing interest in the use of classification and regression tree analyses in several ecological fields. To date, such approaches have never been used by parasitologists for field data. This study aims to both introduce and illustrate the use of multivariate regression trees in order to investigate the determinants of parasite abundance in a multi-scale quantitative context. To do this, we used new field epidemiological data from 1489 coral reef fishes collected around two islands in French Polynesia. We evaluated the relative effect and interactions of several host traits and environmental factors on the abundance of metazoan parasite assemblage at several scales and assessed the impact of major factors on each parasite taxon. Our results suggest that the islands sampled, the host species and host size are equal predictors of parasite abundance at a global scale, whereas other factors proved to be significant predictors of a local pattern, depending on host family. We also discuss the potential use of regression trees for parasitologists as both an explorative and a promising predictive tool.  相似文献   

20.
This study compared the catch composition, catch per unit effort, and incidental impacts of spearfishers and linefishers engaged in a structured fishing program whereby fishing effort was standardized across time, space and skill level. It was found that (1) the catch composition of both groups of fishers overlapped considerably, (2) the numbers of target fish caught by spearfishers (156) and linefishers (168) were not significantly different, (3) the mean size of target fish caught by spearfishers (1.95 ± 0.1 kg, ±SE) was significantly larger than the mean size of target fish caught by linefishers (1.27 ± 0.06 kg), and (4) spearfishers retained 43% more biomass of target species than did linefishers (304 versus 213 kg, respectively). However, linefishers used ∼1 kg of bait for every 3 kg of target fish that were captured. Linefishers also caught far more undersized, undesirable, or protected fishes (i.e., bycatch) and caused far more pollution (i.e., lost gear) than did spearfishers. It is concluded that the overall impacts of recreational spearfishing and linefishing on fishery resources of the Great Barrier Reef are broadly equivalent (per unit of fishing effort), and that management regulations should be applied equitably across both fishing sectors. A management strategy of this type will simplify enforcement of fisheries regulations and avoid discrimination of particular fishers in local communities where both fishing methods are socially or culturally important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号