首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

2.
It is becoming apparent that the hormone leptin plays an important role in modulating hippocampal function. Indeed, leptin enhances NMDA receptor activation and promotes hippocampal long-term potentiation (LTP). Furthermore, obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Here we demonstrate that under conditions of enhanced excitability (evoked in Mg2+-free medium or following blockade of GABA(A) receptors), leptin induces a novel form of long-term depression (LTD) in area CA1 of the hippocampus. Leptin-induced LTD was markedly attenuated in the presence of D-(-)-2-Amino-5-Phosphonopentanoic acid (D-AP5), suggesting that it is dependent on the synaptic activation of NMDA receptors. In addition, low-frequency stimulus-evoked LTD occluded the effects of leptin. In contrast, metabotropic glutamate receptors (mGluRs) did not contribute to leptin-induced LTD as mGluR antagonists failed to either prevent or reverse this process. The signalling mechanisms underlying leptin-induced LTD were independent of the Ras-Raf-mitogen-activated protein kinase signalling pathway, but were markedly enhanced following inhibition of either phosphoinositide 3-kinase or protein phosphatases 1 and 2A. These data indicate that under conditions of enhanced excitability, leptin induces a novel form of homosynaptic LTD, which further underscores the proposed key role for this hormone in modulating NMDA receptor-dependent hippocampal synaptic plasticity.  相似文献   

3.
Long-term potentiation (LTP) is a form of synaptic plasticity thought to be involved in learning and memory. Althrough extensively studied, mainly in the CA1 region of the hippocampus, the mechanisms underlying the induction and expression of LTP are poorly elucidated. This is probably due to the fact that LTP is not a unique process and indeed recent studies have shown that several forms of LTP could be generated depending on the experimental conditions. Furthermore, LTP is generally associated with a long-lasting increase of the synaptic efficacy of AMPA receptors but an increasing number of data also suggested that NMDA receptors could be potentiated as well. NMDA receptor responses are modulated by a large number of extracellular and intracellular events, providing additional possibilities for the generation of LTP. The role of these different modulatory sites of the NMDA receptor and their relation with LTP are reviewed with a particular attention to the redox site which seems to be a selective target to distinguish between AMPA and NMDA-LTP. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
目的 :研究D 半乳糖合并Meynert基底核损毁Alzheimer病 (AD)大鼠模型海马突触可塑性的变化。方法 :通过0 .96 %D 半乳糖致亚急性损伤及鹅膏蕈氨酸损毁Meynert基底核建立AD动物模型 ,应用行为学测试、电生理学方法和电镜观察 ,研究AD模型大鼠海马突触形态结构和长时程增强现象 (long termpotentiation ,LTP)的变化。结果 :①AD模型大鼠在Morris水迷宫的学习记忆能力明显低于对照组 ;②AD大鼠海马CA1区突触的数密度、面密度明显减少 ;③AD模型大鼠海马齿状回产生的LTP较对照组明显降低。结论 :海马突触结构改变和功能可塑性的降低可能与AD大鼠的学习记忆能力下降有关  相似文献   

5.
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.  相似文献   

6.
Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor activation results in production of reactive oxygen species (ROS) and activation of extracellular signal-regulated kinase (ERK) in hippocampal area CA1. In addition, application of ROS to hippocampal slices has been shown to result in activation of ERK in area CA1. To determine whether these events were linked causally, we investigated whether ROS are required for NMDA receptor-dependent activation of ERK. In agreement with previous studies, we found that treatment of hippocampal slices with NMDA resulted in activation of ERK in area CA1. The NMDA receptor-dependent activation of ERK was either blocked or attenuated by a number of antioxidants, including the general antioxidant N-acetyl-L-cysteine (L-NAC), the superoxide-scavenging enzyme superoxide dismutase (SOD), the membrane-permeable SOD mimetic Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), the hydrogen peroxide-scavenging enzyme catalase, and the catalase mimetic ebselen. The NMDA receptor-dependent activation of ERK also was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI) and was absent in mice that lacked p47(phox), one of the required protein components of NADPH oxidase. Taken together, our results suggest that ROS production, especially superoxide production via NADPH oxidase, is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.  相似文献   

7.
The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long-term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol-exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure.  相似文献   

8.
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.  相似文献   

9.
Plasticity of NMDA receptor-mediated synaptic transmission was studied in the CA1 region of the hippocampus utilising whole cell patch-clamp recording techniques. LTP was associated with a decrease in CV whereas LTD was accompanied by an increase in CV and a decrease in Pr. These data are consistent with LTP and LTD being an opposite expression of the same fundamental process.  相似文献   

10.
Maintenance of long-term potentiation (LTP) requires de novo gene expression. Here we report the direct isolation, using PCR-differential display, of genes whose expression level was altered after induction of long-lasting LTP in the hippocampus of freely moving awake rats. Differential display using 480 primer combinations revealed 17 cDNA bands that showed a reproducible change in expression level. These cDNAs represented at least 10 different genes (termed RM1-10), all of which showed up-regulation at 75 min after LTP induction and a return to basal expression levels within 24 h. Three of these genes were known only from expressed sequence tags (RM1-3), two were known genes whose up-regulation by LTP has not been described (GADD153/CHOP and ler5), and five were known genes whose up-regulation by LTP has already been reported (MAPK phosphatase, NGFI-A/zif268, vesl-1S/homer-1a, Ag2, and krox-20). We characterized the expression profiles of genes in the two former categories with respect to NMDA receptor dependency, tissue specificity, and developmental regulation using northern blotting and semiquantitative RT-PCR. The up-regulation of all five of these genes was NMDA receptor-dependent and correlated with the persistence of LTP, suggesting that these genes may play functional roles in prolonged LTP maintenance.  相似文献   

11.
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Zhang L  Yu W  Han TZ  Xie W  Luo Y 《生理学报》2006,58(5):442-448
短期强化训练能否建立可靠的空间长时记忆?用不同训练方式建立空间记忆后,大鼠海马结构NMDA受体的表达发生怎样的变化?目前尚未见明确报道。本研究应用Morris水迷宫方法分别采用以下模式对大鼠进行训练:空间长时记忆训练模式(LT组)、空间短时记忆训练模式(ST组)以及短期强化训练模式(SRT组),对不同训练模式建立的空间记忆进行了比较,应用免疫荧光组织化学方法检测各组大鼠海马结构NMDA/NR1受体表达的变化。结果表明,Morris水迷宫训练过程中,LT和SRT组大鼠寻找站台的半均潜伏期和策略均无显著性差异:记忆检测发现,除LT组大鼠在站台所在象限的停留时间明显长于SRT组大鼠外,两组大鼠寻找站台的潜伏期和策略以及穿越站台的次数均无显著性差异。ST组大鼠海马结构NMDA/NR1的免疫反应强度与对照组相比,无显著差异。但是,LT和SRT组大鼠海马CA1区锥体细胞联及齿状回的颗粒细胞层NMDA/NR1免疫荧光反应都明显增强,两组之间比较无显著差异,但是两组分别与对照组和ST组相比均有显著性差异。上述结果提示,短期强化训练可建立与长期训练基本相同的空间长时记忆。大鼠海马结构CA1区和齿状回NMDA受体表达的增加,可能是空间长时记忆形成的机制之一。  相似文献   

13.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

14.
Neuroplastin-65 is a brain-specific, synapse-enriched member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. Previous studies highlighted the importance of neuroplastin-65 for long-term potentiation (LTP), but the mechanism was unclear. Here, we show how neuroplastin-65 activation of mitogen-activated protein kinase p38 (p38MAPK) modified synapse strength by altering surface glutamate receptor expression. Organotypic hippocampal slice cultures treated with the complete extracellular fragment of neuroplastin-65 (FcIg1-3) sustained an increase in the phosphorylation of p38MAPK and an inability to induce LTP at hippocampal synapses. The LTP block was reversed by application of the p38MAPK inhibitor SB202190, suggesting that p38MAPK activation occurred downstream of neuroplastin-65 binding and upstream of the loss of LTP. Further investigation revealed that the mechanism underlying neuroplastin-65-dependent prevention of LTP was a p38MAPK-dependent acceleration of the loss of surface-exposed glutamate receptor subunits that was reversed by pretreatment with the p38MAPK inhibitor SB202190. Our results indicate that neuroplastin-65 binding and associated stimulation of p38MAPK activity are upstream of a mechanism to control surface glutamate receptor expression and thereby influence plasticity at excitatory hippocampal synapses.  相似文献   

15.
Chen L  Han TZ  Jiang ML 《生理学报》2008,60(2):270-274
前期研究显示低频率多串刺激能够在成年大鼠海马CAl区诱发稳定的长时程压抑(long-term depression,LTD),而这种LTD的受体机制目前还不清楚.本研究采用成年大鼠海马脑片标本,电刺激Schaffer侧枝传入纤维,在CAl区锥体细胞层记录群体锋电位(population spikes,PS),并分别应用N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体和代谢型谷氨酸(metabotropic glutamate,mGlu)受体的拮抗剂AP5和MCPG,观察两组低频率(2-Hz和5-Hz)多串刺激能否诱导LTD,以揭示不同刺激形式诱导成年大鼠LTD的可能受体机制.结果显示,AP5和MCPG都能抑制由2-Hz多串刺激诱导的LTD:强直刺激后20 min时PS幅度分别为基础值的(96.0±3.5)%(n=10)和(95.7±4.1)%(n=8).MCPG能够抑制5-Hz多串刺激诱导的LTD的产生,而AP5不能:分别应用AP5和MCPG后,强直刺激后35 min时PS的幅度分别为基础值的(73.6±4.4)%(n=10)和(98.2±8.9)%(n=8).以上结果提示,2-Hz多串刺激诱导的LTD可能依赖于NMDA受体与mGlu受体的共同活化,而5-Hz多串刺激诱导的LTD只与mGlu受体有关.因此,不同频率的多串刺激诱导的LTD涉及不同的谷氮酸受体机制.  相似文献   

16.
MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA‐181a (miR‐181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity‐related proteins at synapses. We have previously demonstrated that miR‐181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity‐related proteins. Here, we further investigated the underlying mechanisms by which miR‐181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity‐dependent upregulation of the microRNA‐regulating protein, translin, correlated with reduction of miR‐181a upon chemical long‐term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR‐181a, and other plasticity‐related proteins. Additionally, Aβ treatment inhibited cLTP‐dependent induction of translin and subsequent reduction of miR‐181a, and cotreatment with miR‐181a antagomir effectively reversed the effects elicited by Aβ but did not rescue translin levels, suggesting that the activity‐dependent upregulation of translin was upstream of miR‐181a. In mice, a learning episode markedly decreased miR‐181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR‐181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg‐AD model. Taken together, our results indicate that miR‐181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aβ disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.  相似文献   

17.
Abstract: The participation of NMDA and non-NMDA receptors in domoic acid-induced neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons were exposed to 300 µMl -glutamate or 10 µM domoate for 2 h in physiologic buffer at 22°C followed by a 22-h incubation in 37°C conditioned growth media. Excitotoxic injury was monitored as a function of time by measurement of lactate dehydrogenase (LDH) activity in both the exposure buffer and the conditioned media. Glutamate and domoate evoked, respectively, 50 and 65% of the total 24-h increment in LDH efflux after 2 h. Hyperosmolar conditions prevented this early response but did not significantly alter the extent of neuronal injury observed at 24 h. The competitive NMDA receptor antagonist d (?)-2-amino-5-phosphonopentanoic acid and the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) reduced glutamate-induced LDH efflux totals by 73 and 27%, respectively, whereas, together, these glutamate receptor antagonists completely prevented neuronal injury. Domoate toxicity was reduced 65–77% when CGCs were treated with competitive and noncompetitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and adenosine from neurons. Domoate-stimulated EAA release occurred almost exclusively through mechanisms related to cell swelling and reversal of the glutamate transporter. Thus, whereas glutamate-induced injury is mediated primarily through NMDA receptors, the full extent of neurodegeneration is produced by the coactivation of both NMDA and non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily through NMDA receptors, which are activated secondarily as a consequence of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated stimulation of EAA efflux.  相似文献   

18.
The hippocampus is a center for learning and memory as well as a target of Alzheimer's disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention.  相似文献   

19.
Long‐term potentiation (LTP) and long‐term depression (LTD) are the current models of synaptic plasticity and widely believed to explain how different kinds of memory are stored in different brain regions. Induction of LTP and LTD in different regions of brain undoubtedly involve trafficking of AMPA receptor to and from synapses. Hippocampal LTP involves phosphorylation of GluR1 subunit of AMPA receptor and its delivery to synapse whereas; LTD is the result of dephosphorylation and endocytosis of GluR1 containing AMPA receptor. Conversely the cerebellar LTD is maintained by the phosphorylation of GluR2 which promotes receptor endocytosis while dephosphorylation of GluR2 triggers receptor expression at the cell surface and results in LTP. The interplay of phosphorylation and O‐GlcNAc modification is known as functional switch in many neuronal proteins. In this study it is hypothesized that a same phenomenon underlies as LTD and LTP switching, by predicting the potential of different Ser/Thr residues for phosphorylation, O‐GlcNAc modification and their possible interplay. We suggest the involvement of O‐GlcNAc modification of dephosphorylated GluR1 in maintaining the hippocampal LTD and that of dephosphorylated GluR2 in cerebral LTP. J. Cell. Biochem. 109: 585–597, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号