首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is a vital process for normal tissue development and wound healing, but is also associated with a variety of pathological conditions. Using this protocol, angiogenesis may be measured in vitro in a fast, quantifiable manner. Primary or immortalized endothelial cells are mixed with conditioned media and plated on basement membrane matrix. The endothelial cells form capillary like structures in response to angiogenic signals found in conditioned media. The tube formation occurs quickly with endothelial cells beginning to align themselves within 1 hr and lumen-containing tubules beginning to appear within 2 hr. Tubes can be visualized using a phase contrast inverted microscope, or the cells can be treated with calcein AM prior to the assay and tubes visualized through fluorescence or confocal microscopy. The number of branch sites/nodes, loops/meshes, or number or length of tubes formed can be easily quantified as a measure of in vitro angiogenesis. In summary, this assay can be used to identify genes and pathways that are involved in the promotion or inhibition of angiogenesis in a rapid, reproducible, and quantitative manner.  相似文献   

2.
探讨TWIST1在原代人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)增殖、迁移及体外血管生成中的作用。用有靶向人TWIST1基因shRNA(pLL3.7-shTwist1-GFP)的慢病毒液感染试验组细胞,同时以携带Scramble shRNA的慢病毒液(pLL3.7-shCtrl-GFP)感染对照组细胞,用流式细胞术测定细胞感染效率,实时荧光定量PCR(real-time fluorescent quantitative PCR,qRT-PCR)检测shRNA的基因沉默效率。通过制作细胞生长曲线、Annexin V/7AAD染色流式细胞术、细胞划痕实验、小管形成实验、qRT-PCR检测TWIST1表达降低对HUVECs的增殖、凋亡、迁移、血管形成能力以及血管生长因子受体2(vascular endothelial growth factor receptor 2,VEGFR2)基因表达的影响。试验组TWIST1基因表达下降为对照组的30%,表明shTWIST1能有效降低TWIST1基因的表达。与对照组相比,敲降TWIST1能明显抑制HUVECs的增殖(P<0.01),诱导细胞凋亡(P<0.05)。试验组HUVECs划痕愈合率、体外生成的血管样结构数目和总小管分支长度均显著低于对照组(P<0.01);与对照组相比,试验组HUVECs中VEGFR2的表达显著降低(P<0.01)。通过探究HUVECs表达的TWIST1在内皮细胞增殖、存活、迁移和毛细血管样结构的形成中的作用,为TWIST1作为抑制肿瘤血管新生治疗的新靶点提供一定的理论依据。  相似文献   

3.
Syndecans are important cell surface proteoglycans with many functions; yet, they have not been studied to a very large extent in primary human endothelial cells. The purpose of this study was to investigate syndecan-4 expression in cultured human umbilical vein endothelial cells (HUVECs) and assess its role in inflammatory reactions and experimental wound healing. qRT-PCR analysis revealed that syndecan-3 and syndecan-4 were highly expressed in HUVECs, whereas the expression of syndecan-1 and -2 was low. HUVECs were cultured with the inflammatory mediators lipopolysaccharide (LPS) and interleukin 1β (IL-1β). As a result, syndecan-4 expression showed a rapid and strong increase. Syndecan-1 and -2 expressions decreased, whereas syndecan-3 was unaffected. Knockdown of syndecan-4 using siRNA resulted in changes in cellular morphology and focal adhesion sites, delayed wound healing and tube formation, and increased secretion of the pro-inflammatory and angiogenic chemokine, CXCL8. These data suggest functions for syndecan-4 in inflammatory reactions, wound healing and angiogenesis in primary human endothelial cells.  相似文献   

4.
5.
Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and its expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.  相似文献   

6.

Background

Breast cancer–endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells.

Methods

To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties.

Results

BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC.

Conclusions and general significance

BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

7.
Frizzled are seven-transmembrane domain G-protein coupled receptors involved in cell polarity and Wnt signaling. The mechanisms regulating their turnover at the plasma membrane remain unclear. We have identified a regulated C-terminus cleavage of Frizzled-7 in endothelial cells using ectopic expression of N- and C-termini-tagged Frizzled-7 proteins. This specific cleavage produced a 10 kDa C-terminus fragment that remained associated with intracellular vesicles and was localized within the 3rd intracytoplasmic loop using N-terminal sequencing and targeted mutagenesis. Frizzled-7 mutated forms displaying reduced C-terminus cleavage were also defective for dvl2 translocation at the plasma membrane. PMA, an activator of PKC and endocytosis, but not Wnt13A and Wnt5A, increased the appearance of Frizzled-7 C-terminus-containing vesicles and Frizzled-7 cleavage. Concanavalin-A, an inhibitor of receptor internalization decreased both constitutive and PMA-induced Frizzled-7 cleavage, while inhibition of the endocytic pathway with Delta95-295-Eps15 dominant-negative prevented only PMA-induced Frizzled-7 cleavage. Frizzled-7 C-terminus cleavage was increased with cell density and by the Ca(2+) ionophore ionomycin and was decreased by specific calpain inhibitors, by the expression of DN-calpain-1 and the down-regulation of calpain-1 levels by siRNAs. Altogether, our findings pinpoint calpain-1 as a regulator of Frizzled-7 turnover at the plasma membrane and reveal a link between Frizzled-7 cleavage and its activity.  相似文献   

8.
Extracellular vesicles (EVs), including exosomes, microvesicles, and others, have emerged as potential therapeutics for a variety of applications. Pre-clinical reports of EV efficacy in treatment of non-healing wounds, myocardial infarction, osteoarthritis, traumatic brain injury, spinal cord injury, and many other injuries and diseases demonstrate the versatility of this nascent therapeutic modality. EVs have also been demonstrated to be effective in humans, and clinical trials are underway to further explore their potential. However, for EVs to become a new class of clinical therapeutics, issues related to translation must be addressed. For example, approaches originally developed for cell biomanufacturing, such as hollow fiber bioreactor culture, have been adapted for EV production, but limited knowledge of how the cell culture microenvironment specifically impacts EVs restricts the possibility for rational design and optimization of EV production and potency. In this review, we discuss current knowledge of this issue and delineate potential focus areas for future research towards enabling translation and widespread application of EV-based therapeutics.  相似文献   

9.
Formation of new blood vessels (angiogenesis) has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumor. Several growth factors, cytokines, small peptides and enzymes support tumor growth either independently or in synergy. Decoding the crucial mechanisms of angiogenesis in physiological and pathological state has remained a subject of intense interest during the past three decades. Currently, the most widely preferred approach for arresting tumor angiogenesis is the blockade of vascular endothelial growth factor (VEGF) pathway; however, the clinical usage of this modality is still limited by several factors such as adverse effects, toxicity, acquired drug resistance, and non-availability of valid biomarkers. Nevertheless, angiogenesis, being a normal physiological process imposes limitations in maneuvering it as therapeutic target for tumor angiogenesis. The present review offers an updated relevant literature describing the role of well-characterized angiogenic factors, such as VEGF, basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF), placenta growth factor (PLGF), hepatocyte growth factor/scatter factor (HGF/SF) and angiopoetins (ANGs) in regulating tumor angiogenesis. We have also attempted to discuss tumor angiogenesis with a perspective of ‘an attractive target with emerging challenges’, along with the limitations and present status of anti-angiogenic therapy in the current state-of-the-art.  相似文献   

10.
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.  相似文献   

11.
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号