首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic plasticity is a key component of the learning machinery in the brain. It is vital that such plasticity be tightly regulated so that it occurs to the proper extent at the proper time. Activity-dependent mechanisms that have been collectively termed metaplasticity have evolved to help implement these essential computational constraints. Various intercellular signalling molecules can trigger lasting changes in the ability of synapses to express plasticity; their mechanisms of action are reviewed here, along with a consideration of how metaplasticity might affect learning and clinical conditions.  相似文献   

2.
Although Zn2+ is contained in large amounts in the synaptic terminals of hippocampal mossy fibers (MFs), its physiological role in synaptic transmission is poorly understood. By using the newly developed high-sensitivity Zn2+ indicator ZnAF-2, the spatiotemporal dynamics of Zn2+ was monitored in rat hippocampal slices. When high-frequency stimulation was delivered to the MFs, the concentration of extracellular Zn2+ was immediately elevated in the stratum lucidum, followed by a mild increase in the stratum radiatum adjacent to the stratum lucidum, but not in the distal area of stratum radiatum. The Zn2+ increase was insensitive to a non-N-methyl-d-aspartate (NMDA) receptor antagonist but was efficiently attenuated by tetrodotoxin or Ca2+-free medium, suggesting that Zn2+ is released by MF synaptic terminals in an activity-dependent manner, and thereafter diffuses extracellularly into the neighboring stratum radiatum. Electrophysiological analyses revealed that NMDA receptor-mediated synaptic responses in CA3 proximal stratum radiatum were inhibited in the immediate aftermath of MF activation and that this inhibition was no longer observed in the presence of a Zn2+-chelating agent. Thus, Zn2+ serves as a spatiotemporal mediator in imprinting the history of MF activity in contiguous hippocampal networks. We predict herein a novel form of metaplasticity, i.e., an experience-dependent non-Hebbian modulation of synaptic plasticity.  相似文献   

3.
Several types of hippocampal interneurons exhibit a form of long-term potentiation (LTP) that depends on Ca2+-permeable AMPA receptors and group I metabotropic glutamate receptors. Several sources of evidence point to a presynaptic locus of LTP maintenance. The retrograde factor that triggers the expression of LTP remains unidentified. Here, we show that trains of action potentials in putative oriens-lacunosum-moleculare interneurons of the mouse CA1 region can induce long-lasting potentiation of stimulus-evoked excitatory postsynaptic currents that mimics LTP elicited by high-frequency afferent stimulation. We further report that blockers of nitric oxide production or TRPV1 receptors failed to prevent LTP induction. The present results add to the evidence that retrograde signalling underlies N-methyl-d-aspartate (NMDA) receptor-independent LTP in oriens interneurons, mediated by an unidentified factor.  相似文献   

4.
Previous studies have shown the inhibitory effect of the in vitro application of copper sulfate on hippocampal long-term potentiation. While in vivo administration of copper did not affect spatial learning and memory. To find possible answers to this controversial issue, we evaluate the effect of different doses of copper sulfate on in vivo long-term potentiation, synaptic transmission, and paired-pulse behavior of CA1 pyramidal cells. Thirty-two male Wistar rats were divided into four groups: control, 5, 10, and 15 mg of copper sulfate. Field excitatory postsynaptic potential from the stratum radiatum of CA1 neurons was recorded following Schaffer collateral stimulation in rats. Spike amplitude, long-term potentiation and paired-pulse index were measured in all groups. The results of this study showed that 5 mg/kg copper sulfate increased synaptic transmission and inhibited long-term potentiation and decreased the hippocampal paired-pulse ratio, while 10 and 15 mg/kg copper sulfate did not affect CA1 synaptic transmission properties. Low, but not high, doses of copper sulfate affect synaptic plasticity. This finding may explain the difference between the effect of copper on synaptic plasticity and spatial learning and memory.  相似文献   

5.
Excitatory postsynaptic potentials (EPSP) were recorded from 14 neurons in guinea pig hippocampal slices (area CAl) after stimulating the stratum radiatum (Schaffer collaterals) and stratum oriens. An increase occurring in EPSP amplitude in 7 units (9 pathways) recorded 15–45 min after tetanic stimulation of Schaffer collaterals is viewed as long-term potentiation (LTP). Statistical analysis conducted according to two sets of quantal theory (histogram and variance methods) showed an increase in mean quantal content (m) during LTP. An increase in quantal size, found only when using the histogram method, did not correlate with LTP level. This increase is thought to be associated with the considerably greater sensitivity of the histogram method to noise level in comparison with the variance method, the latter being more reliable with signals of high noise level. The increase found in m using both methods matches findings previously obtained for the whole brain; it also points to presynaptic location of mechanisms responsible for raised synaptic efficacy during LTP.Institute for Brain Research, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Max-Planck Institute of Biophysical Chemistry, Göttingen, West Germany. Institute of Zoology, Jagiellonian University, Cracow, Poland. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 465–472, July–August, 1990.  相似文献   

6.
Habituation of the Aplysia gill-withdrawal reflex (and siphon-withdrawal reflex) has been attributed to low-frequency homosynaptic depression at central sensory-motor synapses. The recent demonstration that transfer of habituation between stimulation sites occurs in this model system has prompted the hypothesis that heterosynaptic inhibitory pathways also play a role in the mediation of habituation behavior. To test this hypothesis, the sites and mechanisms of neural plasticity which underlie transfer of habituation in Aplysia were examined. Transfer of habituation is a reduction in the reflex evoked at one stimulation site (siphon) due to repeated presentation of a stimulus to a second site (gill). Centrally mediated transfer of habituation, measured in a preparation lacking the siphon-gill peripheral nervous system (PNS), was associated with a reduced excitatory response in central motor neurons. Repeated tactile stimulation of the gill did not attenuate the gill response evoked by electrical stimulation of the branchial nerve nor the mechanoreceptor response recorded in LE sensory neurons. In contrast, repeated stimulation of siphon or gill at a site which was "off" the sensory field of a specific mechanoreceptor led to a diminution in synaptic transmission between that sensory neuron and its followers (motor neurons and inter-neurons). These data demonstrate that centrally mediated transfer of habituation results from heterosynaptic modulation of synaptic transmission at the sensory-motor (and sensory-interneuron) synapses. Therefore, habituation behavior in Aplysia is mediated through the conjoint action of homosynaptic and heterosynaptic inhibitory processes.  相似文献   

7.
Developmental changes in the distribution of brain-specific chondroitin sulfate proteoglycans, neurocan and phosphacan/RPTPzeta/beta, in the hippocampus of the Sprague-Dawley rat were examined using monoclonal antibodies 1G2 and 6B4. The 1G2 immunoreactivity was predominant in the neonatal hippocampus while the 6B4 immunoreactivity was predominant in the mature hippocampus. Moderate 1G2 immunoreactivity was detected in the dentate gyrus and subiculum immediately after birth. Immunoreactivity reached a peak on postnatal days 7-10 (P7-P10) when intense 1G2 labeling was present throughout the neuropil layers of the hippocampus except the mossy fiber tract. 6B4 immunoreactivity was limited in the stratum lacunosum moleculare of CA1 in the neonatal hippocampus. It gradually increased by P21 when diffuse 6B4 immunoreactivity was detected in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, while 1G2 immunoreactivity decreased after P21. In the adult hippocampus, moderate 6B4 immunoreactivity was present in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, but not in the mossy fiber tract. In addition, strong 6B4 labeling appeared around a subset of neurons after P21. The results suggest that neurocan may have a role in the development of neuronal organization, while phosphacan/RPTPzeta/beta may contribute to the maintenance and plasticity of synaptic structure and function. Furthermore, the absence of 1G2 and 6B4 immunoreactivities in the stratum lucidum suggests that neurocan and phosphacan/RPTPzeta/beta may function as a barrier for the extension of mossy fibers and provide an environment permissive for fasciculation of the mossy fibers.  相似文献   

8.
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17beta-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2h. This increase by estradiol was blocked by Erk MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ERalpha agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol.  相似文献   

9.
An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased.These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.Key words: Vitamin E, CA1 stratum radiatum, axo-spinous synapses, glia-synapse relationship, tripartite synapses, morphometry, electron microscopy  相似文献   

10.
Glia-derived D-serine controls NMDA receptor activity and synaptic memory   总被引:11,自引:0,他引:11  
The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a co-agonist like D-serine to its glycine site. As D-serine is released exclusively by astrocytes, we studied the physiological impact of the glial environment on NMDA receptor-dependent activity and plasticity. To this end, we took advantage of the changing astrocytic ensheathing of neurons occurring in the supraoptic nucleus during lactation. We provide direct evidence that in this hypothalamic structure the endogenous co-agonist of NMDA receptors is D-serine and not glycine. Consequently, the degree of astrocytic coverage of neurons governs the level of glycine site occupancy on the NMDA receptor, thereby affecting their availability for activation and thus the activity dependence of long-term synaptic changes. Such a contribution of astrocytes to synaptic metaplasticity fuels the emerging concept that astrocytes are dynamic partners of brain signaling.  相似文献   

11.
Associative long-term synaptic depression (LTD) was investigated utilizing negatively correlated activity patterns in the medial and lateral perforant path inputs to the dentate gyrus in anesthetized rats. Normally only nonassociative, or heterosynaptic, LTD is elicited in naive pathways. We report here, however, that associative LTD in the lateral path is readily induced after being "primed" by a brief period of lateral path synaptic activity at a theta rhythm frequency (5 Hz). Priming of associative LTD lasts at least 2 hr and is not seen following priming activity at non-theta frequencies (1 and 15 Hz). N-methyl-D-aspartate receptor activation is critical for establishing the priming effect, but not for the subsequent induction of the associative LTD. These data suggest that theta rhythm activity in the dentate gyrus may predispose the system to a specific form of synaptic plasticity, associative LTD.  相似文献   

12.
Barbiturate actions on excitatory synaptic responses in CA 1 and dentate regions of hippocampal slices were studied to determine whether different effects occur on anatomically distinct synaptic pathways. Pentobarbital facilitated transmission between stratum radiatum inputs and CA 1 neurons at low concentrations (0.02-0.08 mM) and produced postsynaptic depression at higher concentrations. Only depression was observed for stratum oriens inputs to CA 1 and perforant path inputs to dentate granulae neurons. The (+) isomer of pentobarbital was approximately four times more potent than the (-) isomer of racemic mixture. Phenobarbital (0.04-0.12 mM) produced only depression of synaptic responses in CA 1 and dentate pathways. Comparison of effect on field excitatory postsynaptic potentials and population spike responses indicated that the barbiturates act at selective and pathway-specific sites. The results provide further evidence for specific cellular and membrane recognition sites for barbiturate action.  相似文献   

13.
14.
Activity-dependent structural plasticity of dendritic spines of pyramidal neurons in the central neuron system has been proposed to be a cellular basis of learning and memory. Long-term potentiation (LTP) is accompanied by changes in synaptic morphology and structural remodeling of dendritic spines. However, there is considerable uncertainty as to the nature of the adjustment. The present study tested whether immunoreactive phospho-cofilin, an index of altered actin filament assembly, could be increased by theta-burst stimulations (TBS), which is an effective stimulation pattern for inducing LTP in the hippocampus. The slope of fEPSPs evoked by TBS to Schaffer collateral-commissural fibers in hippocampal slices was measured, and p-cofilin expression was examined using immunofluorescence techniques. Results indicated that saturated L-LTP was produced by multiple TBS episodes to Schaffer collateral-commissural fibers in the hippocampal CA1 area, and TBSs also increased immunoreactive p-cofilin expression in the stratum radiatum of the hippocampal CA1 area and pyramidal layer of the subiculum. D-2-amino-5-phosphonovalerate (D-APV) prevented LTP and expression of p-cofilin immunoreactive induced by multiple TBS episodes in the stratum radiatum of the hippocampal CA1 area. Two paired-pulse low-frequency stimulation (PP-LFS) episodes to Schaffer collateral-commissural fibers induced long-term depression (LTD), and did not affect p-cofilin expression in the stratum radiatum of the hippocampal CA1 area. These results suggest that LTP induction is associated with altered actin filament assembly. Moreover, the CA1 and subiculum areas of the hippocampal formation possibly cooperate with each other in important physiological functions, such as learning and memory, or in pathological diseases, such as epilepsy.  相似文献   

15.
In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potential of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.  相似文献   

16.
NMDA receptor is involved in synaptic plasticity, learning, memory and neurological diseases like epilepsia and it is the major mediator of excitotoxicity. NR2B-containing NMDA receptors may be playing a crucial role in epileptic disorders. In the present study the effect of the convulsant drug 3-mercaptopropionic acid (MP) repetitive administration (4–7 days) on the hippocampal NR2B subunit was studied. A significant decrease in NR2B in the whole hippocampus was observed after MP4 with a tendency to recover to normal values in MP7 by western blot assay. Immunohistochemical studies showed a decrease in several CA1 and CA2/3 strata (21–73%). MP7 showed a reversion of the drop observed at 4 days in stratum oriens, pyramidal cell layer in CA1, CA2/3 and CA1 stratum radiatum. A significant fall in the lacunosum molecular layer of both areas and stratum radiatum of CA2/3 was observed. The immunostaining in MP4 showed a decrease in the granulare layer from dentate gyrus (20%), in hillus (71%) and subicullum (63%) as compared with control and these decreases were similar at MP7 values. Results showed decreases in NR2B subunit expression in different areas following repeated MP-induce seizures, suggesting that NR2B expression is altered depending on the diverse hippocampal input and output signals of each region that could be differently involved in modulating MP-induced hyperactivity.  相似文献   

17.
Parvalbumin-immunoreactive structures in the hippocampus of the human adult   总被引:4,自引:0,他引:4  
Summary Parvalbumin-immunoreactive structures in the fascia dentata and Ammon's horn of the adult human brain were studied using the avidin-biotin-peroxidase technique. Thin fibres (probably axons) were found to form dense networks throughout the cellular layers. Parvalbumin immunoreactivity is observed in even distal portions of nerve cell processes. The excellent quality of the immunoreaction renders the distinction of a large number of possible neuronal types. All parvalbumin-immunoreactive neurons belong to the class of non-granule cells in the fascia dentata and non-pyramidal neurons in Ammon's horn. The fascia dentata harbours four types of neurons in the molecular layer, one type within the granule cell layer and four types in the plexi-form layer. The frequently described basket cells are contained in the group of immunoreactive non-granule cells in the plexiform layer. In field CA4 two neuronal types can be distinguished. Field CA3 reveals a slender cell type in the stratum radiatum, three types in the pyramidal cell layer and three types in the stratum oriens. In field CA2 three neuronal types can be differentiated in the stratum pyramidale. The extended field CA1 is endowed with two types of nerve cells within the stratum moleculare, two types in the stratum radiatum, five neuronal types in the stratum pyramidale, and one spindle-shaped type in the stratum oriens. The morphological features of parvalbumin-immunoreactive neuronal types in the adult human brain are compared with those found in Golgi-studies of mostly young animals or in labelling experiments. This study serves as a basis for further analyzes involving specific diseases such as Alzheimer's disease or epilepsy, where it needs to be clarified to which extent certain neuronal types are afflicted.  相似文献   

18.
The frequency characteristics of tetanic and post-tetanic potentiation of the septohippocampal and hippocampal commissural systems were studied in the acute rabbit preparation. Glass micropipettes were employed to stimulate the medial septal (MSR) and contralateral CA1 (cCA1) regions. Extracellular postsynaptic potentials were recorded in the stratum radiatum and stratum oriens layers of dorsal CA1. Low frequencies of stimulation (2–12 Hz) and brief stimulus trains (7 or 16 stimuli) ensured that only short-term effects appeared in the data. With MSR and cCA1 stimulation, tetanic potentiation became pronounced at 4 Hz, and plateaued at 6–8 Hz. Thus potentiation was found to be pronounced within the range of the rabbit hippocampal theta rhythm. No differences were found in the characteristics of potentiation evoked by stimulation of MSR and cCA1. Post-tetanic potentiation lasting 6–12 sec was found. Again, potentiation characteristics did not depend on stimulus site, suggesting a common mechanism for the pathways studied. A two-factor mechanism was proposed to account for the post-tetanic potentiation data.  相似文献   

19.
Biochemical mechanisms for translational regulation in synaptic plasticity   总被引:2,自引:0,他引:2  
Changes in gene expression are required for long-lasting synaptic plasticity and long-term memory in both invertebrates and vertebrates. Regulation of local protein synthesis allows synapses to control synaptic strength independently of messenger RNA synthesis in the cell body. Recent reports indicate that several biochemical signalling cascades couple neurotransmitter and neurotrophin receptors to translational regulatory factors in protein synthesis-dependent forms of synaptic plasticity and memory. In this review, we highlight these translational regulatory mechanisms and the signalling pathways that govern the expression of synaptic plasticity in response to specific types of neuronal stimulation.  相似文献   

20.
We have combined the nearest neighbour additive spike-timing-dependent plasticity (STDP) rule with the Bienenstock, Cooper and Munro (BCM) sliding modification threshold in a computational model of heterosynaptic plasticity in the hippocampal dentate gyrus. As a result we can reproduce (1) homosynaptic long-term potentiation of the tetanized input, and (2) heterosynaptic long-term depression of the untetanized input, as observed in real experiments. Action Editor: Nicolas Brunel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号