首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin-mediated fluid regulation in the inner ear   总被引:6,自引:0,他引:6  
1. The sensory functions of the inner ear (hearing and balance) critically depend on the precise regulation of two fluid compartments of highly desparate ion composition, i.e., the endolymph and the perilymph.2. The parameters volume, ion composition, and pH need to be held athomeostasis irrespective of the hydration status of the total organism.3. Specific cellular water channels, aquaporins, have been shown to be essential for the fluid regulation of several organs, e.g., kidney, lung, and brain.4. Because of functional similarities of water regulation in the kidney and inner ear this review initially summarizes some aquaporin functions in the kidney and then focuses on 6 out of 11 mammalian aquaporins that are present in the inner ear (AQP1-6).5. Their potential role in the inner ear fluid control will be discussed on the basis of the respective expression patterns and individual pore properties.6. Further, a working model is presented of how the endolymphatic sac may contribute to inner ear fluid regulation.  相似文献   

2.
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB–Efnb2 signaling-deficient mice.  相似文献   

3.
The human endolymphatic duct (ED) and sac of the inner ear have been suggested to control endolymph volume and pressure. However, the physiological mechanisms for these processes remain obscure. We investigated the organization of the periductal interstitial connective tissue cells and extracellular matrix (ECM) in four freshly fixed human EDs by transmission electron microscopy and by immunohistochemistry. The unique surgical material allowed a greatly improved structural and epitopic preservation of tissue. Periductal connective tissue cells formed frequent intercellular contacts and focally occurring electron-dense contacts to ECM structures, creating a complex tissue network. The connective tissue cells also formed contacts with the basal lamina of the ED epithelium and the bone matrix, connecting the ED with the surrounding bone of the vestibular aqueduct. The interstitial connective tissue cells were non-endothelial and non-smooth muscle fibroblastoid cells. We suggest that the ED tissue network forms a functional mechanical entity that takes part in the control of inner ear fluid pressure and endolymph resorption.  相似文献   

4.
The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sj?gren's syndrome, are discussed.  相似文献   

5.
In amphibians, calcium carbonate crystals are present in the endolymphatic sac and the inner ear. The formation of these crystals is considered to be facilitated by a protein called otoconin-22. We examined the spatial and temporal expression of otoconin-22 during the development of the bullfrog (Rana catesbeiana) using RT-PCR, in situ hybridization (ISH), and immunofluorescence techniques. By RT-PCR, otoconin-22 mRNA was first detected in embryos at Shumway stage 20, and this expression pattern continues in late stages. The first otoconin-22 mRNA-positive reaction was detected in stage 22 embryos in the placode of the endolymphatic sac. Otoconin-22 protein was observed in the epithelial cells of the endolymphatic sac at stage 24. On the other hand, a whole-mount ISH technique showed the first expression of otoconin-22 mRNA in the inner ear, in addition to the endolymphatic sac, at the mid-phase of Shumway stage 25. We discuss the role of otoconin-22 in the formation of calcium carbonate crystals in the endolymphatic sac and inner ear.  相似文献   

6.
The endolymphatic sac (ES) is a part of the membranous labyrinth and is believed to absorb endolymph. It has been well-established that the endolymph absorption is dependent on several ion transporters in a manner similar to that in the kidney, and the ES is regulated by hormones such as aldosterone and vasopressin that also affect on the kidney. The thiazide-sensitive Na+, Cl cotransporter (TSC) is an electroneutral cotransporter specific to the kidney that plays an important role in absorption of NaCl in renal tubules. In the inner ear, TSC expression has never been examined. The expression of TSC in the rat ES was examined by RT-PCR, in situ hybridization and immunohistochemistry. These analyses indicated that TSC genes and proteins were expressed in the rat ES. In contrast, it was not observed in the rat cochlea by RT-PCR. This is the first report confirming the expression of TSC in the ES.  相似文献   

7.
Kim SH  Kim UK  Lee WS  Bok J  Song JW  Seong JK  Choi JY 《PloS one》2011,6(6):e21656
The endolymphatic sac (ES) is an inner ear organ that is connected to the cochleo-vestibular system through the endolymphatic duct. The luminal fluid of the ES contains a much higher concentration of proteins than any other compartment of the inner ear. This high protein concentration likely contributes to inner ear fluid volume regulation by creating an osmotic gradient between the ES lumen and the interstitial fluid. We characterized the protein profile of the ES luminal fluid of patients (n = 11) with enlarged vestibular aqueducts (EVA) by proteomics. In addition, we investigated differences in the protein profiles between patients with recent hearing deterioration and patients without hearing deterioration. The mean total protein concentration of the luminal fluid was 554.7±94.6 mg/dl. A total of 58 out of 517 spots detected by 2-DE were analyzed by MALDI-TOF MS. The protein profile of the luminal fluid was different from the profile of plasma. Proteins identified from 29 of the spots were also present in the MARC-filtered human plasma; however, the proteins identified from the other 25 spots were not detected in the MARC-filtered human plasma. The most abundant protein in the luminal fluid was albumin-like proteins, but most of them were not detected in MARC-filtered human plasma. The concentration of albumin-like proteins was higher in samples from patients without recent hearing deterioration than in patients with recent hearing deterioration. Consequently, the protein of ES luminal fluid is likely to be originated from both the plasma and the inner ear and considering that inner ear fluid volumes increase abnormally in patients with EVA following recent hearing deterioration, it is tempting to speculate that albumin-like proteins may be involved in the regulation of inner ear fluid volume through creation of an osmotic gradient during pathological conditions such as endolymphatic hydrops.  相似文献   

8.
9.
The aim of the present work was to assess the effect of various drugs applied locally on the pH of the luminal fluid (pH(lum)) in guinea pig endolymphatic sac. pH(lum) and transepithelial potential, when measured in vivo by means of double-barrelled pH-sensitive microelectrodes, were 7.06 +/- 0.08 and +6.1 +/- 0.34 mV (mean +/- SE; n = 84), respectively, which is consistent with a net acid secretion in the luminal fluid of the endolymphatic sac. Bafilomycin and acetazolamide increased and decreased, respectively, pH(lum). Amiloride, ethylisopropylamiloride, ouabain, and Schering 28080 had no effect on pH(lum). Results obtained with inhibitors of anionic transport systems were inconclusive; e.g., DIDS reduced pH(lum), whereas neither SITS nor triflocin had any effect. We conclude that bafilomycin-sensitive H(+)-ATPase activity accounts for the transepithelial acid gradient measured in the endolymphatic sac and that intracellular and membrane-bound carbonic anhydrase probably participates in regulating endolymphatic sac pH(lum). The relationship between acid pH, endolymph volume, and Ménière's disease remains to be further investigated.  相似文献   

10.
Morphological evidence indicates that the endolymphatic sac of anuran amphibians is involved in the morphogenesis of most statoconia (aragonite crystals). The cells frequently show the aspect of an intense secretory activity, their cytoplasm being totally occupied by a number of vesicles the contents of which might be expelled into the lumen forming the organic—or at times mineral—components of statoconia. Moreover, evidence is presented that another function of the endolymphatic sac might be involvement in a resorptive mechanism for endolymph and for CaCO3 mobilization from aragonite crystals. In fact, these show clear signs of erosion, consistent with a role as a labile calcium deposit played by the calcareous formations of the endolymphatic sac.  相似文献   

11.
Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 Δ/Δ mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 Δ/Δ line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.  相似文献   

12.
A strict control of endolymph composition (high potassium, low sodium fluid) and volume is instrumental for a proper functioning of the inner ear. Alteration of endolymph homeostasis is proposed in the pathogenesis of Menière's disease. However, the mechanisms controlling endolymph secretion remain elusive. By using the vestibular EC5v cells, we provide evidence for the presence of vasopressin, catecholamine and purinergic signaling pathways, coupled to adenylate cyclase, phosphoinositidase C and Ca(2+) activation. We demonstrate that vasopressin and catecholamines stimulate while ATP inhibits apical potassium secretion by EC5v cells. These results open new interesting perspectives for the management of inner ear diseases.  相似文献   

13.
Summary Siliconized, glass micropipets whose tips were filled with oil were used to obtain small (<100 nl) liquid samples from perilymphatic and endolymphatic regions of the inner ears of anesthetized animals: 3 cats, 19 alligator lizards (Gerrhonotus multicarinatus), and 8 skates (Raja erinacea). Samples of cerebrospinal fluid and seawater were also obtained for skates. Electron probe microanalysis was used to measure the concentrations of the following elements in each sample: K, Na, Cl, Ca, Mg, P, S. The Na and K concentrations in cat perilymph (Fig. 1 and Table 2) agree with previous estimates (Table 4) while endolymph samples show relatively low Na and high K concentrations. From a comparison of our results with previous work (Table 3), we infer that contamination of endolymph samples with perilymph is relatively low in our study, and that no large species difference in endolymph content is indicated by present data available for mammals. Our results show that Cl concentration is higher and Ca and Mg concentrations are lower in endolymph than in perilymph. The composition of perilymph in cats and alligator lizards is roughly the same (Figs. 1 and 2, Table 2). Uncontaminated endolymph samples in lizards were apparently difficult to obtain, although the compositions of a few samples suggest that endolymph K concentration is high and Na concentration is low. In skates the concentration of Na is nearly the same in the two inner ear lymphs (Fig. 3 and Table 2), in contrast to the roughly hundredfold ratio of perilymph to endolymph Na concentrations found in the higher vertebrates. The element composition of perilymph is correlated with the composition of seawater in which the skates were kept, whereas the endolymph composition shows no such correlation.Abbreviations CSF cerebrospinal fluid - EL samples, PL samples samples judged by visual criteria alone to be from the endolymphatic and perilymphatic spaces, respectively - SW sea water This work was supported by grants from the National Institutes of Health, National Aeronautics and Space Administration, and the Health Science Fund. We thank the following people for contributions to this work: D. Beil, K. Blouch, and E. Marr.  相似文献   

14.
Inner ear melanocytes are mainly present in the cochlea, vestibular organ, and endolymphatic sac, but their exact biological function has not been determined. In this investigation, we study the pigment cells in the membranous labyrinth of the gerbil. The inner ear melanocytes of M. unguiculatus show an irregular dendritic shape with cytoplasmic processes. These cells are disposed following the distribution of striai marginal and vestibular dark cells that have an important metabolic activity. Gerbil inner ear melanocytes are characterized by the presence of melanosomes, which are homogeneously dense organelles, of variable size and shape, that are surrounded by a membrane. In these cells, the Golgi apparatus plays a important role in melanin synthesis. When melanocytes were incubated in L-DOPA solution, the vesicles and cisterns of the Golgi apparatus exhibited a positive tyrosinase reaction. An interesting observation is the relation between melanocytes and inner ear capillaries. Sometimes, near to sensory vestibular areas, the melanocytes were in contact with Schwann cells and with myelinated fibres of vestibular nerve. The ultrastructural findings of this investigation are consistent with the hypothesis that melanocytes may have functional significance in the inner ear.  相似文献   

15.
The endolymphatic sac (ES) is a part of the membranous labyrinth that contains the cochlea, vestibular organs, and semicircular canals, and is believed to absorb endolymphatic fluid. Na+–K+–2Cl (NKCC) is a cotransporter that occurs as two isoforms (NKCC-1 and NKCC-2). Especially, NKCC-2 is suggested to participate in ES endolymph absorption. In the present study, the expression and cellular localization of NKCC-1 and NKCC-2 in the rat ES were examined by RT-PCR and in situ hybridization, respectively. The findings indicate that both NKCC-1 and NKCC-2 are expressed in the rat ES and suggest that NKCC is involved in ES homeostasis. NKCC-2 may be particularly involved in endolymph absorption. This is the first report confirming NKCC expression in the ES.  相似文献   

16.
Prior studies have shown that kreisler mutants display early inner ear defects that are related to abnormal hindbrain development and signaling. These defects in kreisler mice have been linked to mutation of the kr/mafB gene. To investigate potential relevance of kr/mafB and abnormal hindbrain development in inner ear patterning, we analyzed the ear morphogenesis in kreisler mice using a paint-fill technique. We also examined the expression patterns of a battery of genes important for normal inner ear patterning and development. Our results indicate that the loss of dorsal otic structures such as the endolymphatic duct and sac is attributable to the downregulation of Gbx2, Dlx5 and Wnt2b in the dorsal region of the otocyst. In contrast, the expanded expression domain of Otx2 in the ventral otic region likely contributes to the cochlear phenotype seen in kreisler mutants. Sensory organ development is also markedly disrupted in kreisler mutants. This pattern of defects and gene expression changes is remarkably similar to that observed in Gbx2 mutants. Taken together, the data show an important role for hindbrain cues, and indirectly, kr/mafB, in guiding inner ear morphogenesis. The data also identify Gbx2, Dlx5, Wnt2b and Otx2 as key otic genes ultimately affected by perturbation of the kr/mafB-hindbrain pathway.  相似文献   

17.
The ultrastructure of the endolymphatic sac (ES) of the late stage larva of the Japanese red-bellied newt, Cynops pyrrhogaster (stage 57), was examined by light and transmission electron microscopy. The two endolymphatic sacs are located at the dorsal-medial side of the otic vesicle on the dorsal-lateral side of the midbrain in the cranial cavity. The wall of the sac is composed of a layer of cubical epithelial cells with loose, interposed intercellular spaces. The sac contains a large luminal cavity, in which endolymph and numerous otoconia are present. The epithelial cells of different portions of the sac have a similar structure. These cells contain an abundance of cytoplasmic organelles, including ribosomes, Golgi complexes, and numerous vesicles. Two types of vesicles are found in the epithelial cells: the “floccular” vesicle and the “granular” vesicle. The floccular vesicles are located in the supra- and lateral-nuclear cytoplasm and contain flocccular material. The granular vesicles have a fine granular substance and are usually situated apposed to the apical cell membrane. The granular vesicles are suggested to be secreted into the lumen, while the floccular vesicles are thought to be absorbed from the lumen and conveyed to the intercellular spaces by the epithelial cells. The apical surfaces of the epithelial cells bear numerous microvilli. Apparently floating cells, which bear long microvilli on the free surfaces, are observed in the lumen of the ES. Based on the fine structure, the function of the endolymphatic sac of the newt Cynops pyrrhogaster is discussed.  相似文献   

18.
The identification of deafness genes helped to unravel the molecular mechanisms of ion movements that underlie the hearing process in the inner ear. Sound waves cause movements of the tympanic membrane that are transmitted as fluid movements to the inner ear by the middle ear bones. The sound-induced movements deflect hair cell stereocilia, which are bathed in endolymph. These movements cause the opening of mechanosensitive ion channels. Because of the high potassium concentration of the endolymph, potassium floods into the hair cells, which then depolarize. This results in transmitter release and the generation of postsynaptic electrical signals which are transmitted via the cochlear nerve. The unique ion gradient between hair cells and the endolymph is generated by a highly specialized epithelium in the lateral wall of the scala media, the stria vascularis.  相似文献   

19.
The endolymphatic sac (ES) is believed to play an important role in maintaining homeostasis in the inner ear by the absorption and endocytosis of endolymph. Megalin is a 600-kDa multiligand endocytic receptor expressed in certain types of absorptive epithelia including kidney proximal tubules. We analyzed the immunoreactivity for megalin in rat ES by immunofluorescence, immunogold electron microscopy, and immunoblotting. With immunostaining, the luminal substances of the ES were strongly stained for megalin. Megalin was also localized in luminal macrophage-like cells and both types of epithelial cell (mitochondria-rich cells and ribosome-rich cells). In these cells, the megalin was localized in the lumen of endosomes, but was not membrane associated. This localization pattern indicates that the megalin in these cells is not a membrane receptor, but merely one of the constituents that are endocytosed from the lumen of the ES. Immunoblotting indicated that the megalin in the ES is a 210-kDa molecule lacking a cytoplasmic domain. This suggests that the megalin in the ES may be a soluble form, different from the 600-kDa membrane-bound receptor expressed in kidneys. Taken together, it is likely that the megalin in the ES lumen is a soluble component and may be endocytosed by the ES epithelial cells. Furthermore, we found that the tectorial membrane, an acellular structure in the cochlea, gave a strong megalin immunoreaction. Since the cochlea is connected to the ES, the megalin may be transported alone or with the components of the tectorial membrane from the cochlea to the ES lumen through longitudinal flow.  相似文献   

20.
The mammalian inner ear is located deep within the temporal bone. The organ of Corti, the delicate sensory system for sound, is surrounded by two fluid systems; the potassium-rich endolymph and the sodium-rich perilymph. The pathogenesis of inner ear deafness is thought to be largely due to an imbalance of potassium and sodium ions in the inner ear fluids. Dynamic changes in K+ in the endolymph and perilymph were studied in the guinea-pig following cetrimide (cetrimonium bromide, a powerful cationic detergent which shows ototoxicity) applications on the round window membrane, intramuscular injection of potassium bromate (bread whitener, known to cause renal damage and permanent deafness in animals and man). Maximum fall in K+ concentration in the endolymoh (mM/min) and maximum K+ conductance (mM/min/mV) were 3.54 +/- 1.65 and 0.036 +/- 0.02 in cetrimide, and 1.85 +/- 0.35 and 0.021 +/- 0.009 in potassium bromate, respectively. In view of these findings, the influence of the active transport mechanism to K+ concentrations are discussed in comparison with dynamic changes in endolymph K+ induced by asphyxia and ethacrynic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号