首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to study the role of H(2)O(2) in the regulation of NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase, EC ) with relation to cell density of HeLa cells cultures and the function played by NQO1 in these cells. Levels of NQO1 activity were much higher (40-fold) in confluent HeLa cells than in sparse cells, the former cells being much more resistant to H(2)O(2). Addition of sublethal concentrations of H(2)O(2) (up to 24 microm) produced a significant increase of NQO1 (up to 16-fold at 12 microm) in sparse cells but had no effect in confluent cells. When cells reached confluency in the presence of pyruvate, a H(2)O(2) scavenger, NQO1 activity was decreased compared with cultures grown to confluency without pyruvate. Inhibition of quinone reductases by dicumarol substantially decreased viability of confluent cells in serum-free medium. This is the first demonstration that regulation of NQO1 expression by H(2)O(2) is dependent on the cell density in HeLa cells and that endogenous generation of H(2)O(2) participates in the increase of NQO1 activity as cell density is higher. This enzyme is required to promote survival of confluent cells.  相似文献   

2.
In cell suspension cultures of Taxus chinensis, 40 mg/l fungal elicitor from Aspergillus niger and 20 microM HgCl2 elicited 5.7 and 3.6 mg/l taxol, which was a 9-fold and 5-fold increase vs. compared with the control, respectively. The fungal elicitor induced hydrogen peroxide (H2O2) accumulation but HgCl2 did not, indicating that H2O2 was not necessary for enhancement of taxol induced by elicitor. Compared with the treatment with fungal elicitor alone, exogenous catalase, ascorbic acid, diphenylene iodonium and superoxide dismutase induced a 0.45, 0.4, 0.7 and 1.4-fold H2O2, but elicited taxol production, which was 0.98, 1.2, 1.1 and 0.9-fold, respectively, vs. non-treated cells Elicitor-induced taxol production was not accorded with the amount of H2O2 production.  相似文献   

3.
Primary cultures of porcine aortic endothelial cells were used to assess the effects of O2 intermediates produced by 10-40 mU/ml xanthine oxidase (XO; +2 mM hypoxanthine) or 25-100 mU/ml glucose oxidase (GO; +5 mM glucose). A 60-min incubation in the presence of the enzyme systems resulted in a dose-dependent toxic effect with evidence of cytolysis (increased LDH release) and cell loss (decrease in DNA and protein content), when these indexes were measured 24 hr after completion of the enzyme reaction. Decreased [3H]thymidine incorporation into DNA was the most sensitive index of cell dysfunction for both enzyme systems. The effects of various scavengers and enzymes indicated that H2O2 was the main O2 intermediate involved in the cytotoxicity resulting from the XO-hypoxanthine reaction. Increased glutathione peroxidase activity associated with the addition of 2 X 10(-7) M selenomethionine to culture medium had a partial protective effect which could be related to an increased rate of H2O2 degradation. Evidence for increased DNA synthesis after injury was found in cells previously exposed to XO-hypoxanthine, the degree of increase in [3H]thymidine incorporation being dependent on the intensity of the initial cytotoxicity. Cultured endothelial cells provide a useful tool to evaluate the role of O2 intermediates in endothelial cell injury, to test the effects of protective agents, and to study the repair process.  相似文献   

4.
Uncaria tomentosa cell suspension cultures were grown in a 2-L stirred tank bioreactor operating at a shear rate gamma(.)(avg)=86 s(-1). The cultures showed an early monophasic oxidative burst measured as H2O2 production (2.15 micromol H2O2 g(-1) dw). This response was followed by a transient production of monoterpenoid oxindole alkaloids (178 +/- 40 microg L(-1) at 24 h). At the stationary phase (144 h), the increase of the shear rate gamma(.)(avg) up to 150 s(-1) and/or oxygen tension up to 85% generated H2O2, restoring oxindole alkaloid production. U. tomentosa cells cultured in Erlenmeyer flasks also exhibited the monophasic oxidative burst but the H2O2 production was 16-fold lower and the alkaloids were not detected. These cells exposed to H2O2 generated in situ produced oxindole alkaloids reaching a maximum of 234 +/- 40 microg L(-1). A positive correlation was observed between the oxindole alkaloid production and the endogenous H2O2 level. On the other hand, addition of 1 microM diphenyleneiodonium (NAD(P)H oxidase inhibitor) or 10 microM sodium azide (peroxidases inhibitor) reduced both H2O2 production and oxindole alkaloids build up, suggesting that these enzymes might play a role in the oxidative burst induced by the hydrodynamic stress.  相似文献   

5.
Mutagenicity of hydrogen peroxide in V79 Chinese hamster cells   总被引:3,自引:0,他引:3  
Hydrogen peroxide (H2O2) was investigated for its potential to induce gene mutations in V79 Chinese hamster cells. Exposure of 2-3 X 10(6) cells/100-mm dish to 0.5-4.0 mM H2O2 for 1 h resulted in a concentration-dependent increase in the frequency of 6-thioguanine-resistant clones. At 4 mM H2O2 the mutation frequency was increased about 6-fold above that in controls and survival of the cells was reduced by 50%. Cytotoxicity was markedly increased at lower cell densities. When only 100-200 cells/100-mm dish were exposed to H2O2 for 1 h, 50% were killed at an H2O2 concentration as low as 60 microM. The results show that mutagenicity of H2O2 in mammalian cells in vitro has escaped attention previously because the concentrations tested were too low, presumably because the likely toxicity of H2O2 to V79 cells treated at high cell densities was overestimated.  相似文献   

6.
Vasko MR  Guo C  Kelley MR 《DNA Repair》2005,4(3):367-379
Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reducing Ape1 expression in primary cultures of hippocampal and sensory neurons on several endpoints of neurotoxicity induced by H2O2. Ape1 is highly expressed in hippocampal and sensory neurons grown in culture as indicated by immunohistochemistry, immunoblotting and activity. Exposing hippocampal or sensory neuronal cultures to 25 or 50 nM small interfering RNA to Ape1 (Ape1siRNA), respectively, for 48 h, causes a reduction in immunoreactive Ape1 by approximately 65 and 54%, and an equivalent loss in endonuclease activity. The reduced expression of Ape1 is maintained for up to 5 days after the siRNA in the medium is removed, whereas exposing cultures to scrambled sequence siRNA (SCsiRNA) has no effect of Ape1 protein levels. The reduction in Ape1 significantly reduces cell viability in cultures 24 h after a 1-h exposure to 25-300 microM H2O2, compared to SCsiRNA treated controls. In cells treated with SCsiRNA, exposure to 300 microM H2O2 reduced cell viability by 40 and 30% in hippocampal and sensory neuronal cultures, respectively, whereas cultures treated with Ape1siRNA lost 93 and 80% of cells after the peroxide. Reduced Ape1 levels also increase caspase-3 activity in the cells, 2-3-fold, 60min after a 1-h exposure to 100 microM H2O2 in the cultures. Exposing neuronal cultures with reduced expression of Ape1 to 65 microM H2O2 (hippocampal) or 300 microM H2O2 (sensory) for 1h results in a 3-fold and 1.5-fold increase in the phosphorylation of histone H2A.X compared to cells exposed to SCsiRNA. Overexpressing wild-type Ape1 in hippocampal and sensory cells using adenoviral expression constructs results in significant increase in cell viability after exposure to various concentrations of H2O2. The C65A repair competent/redox incompetent Ape1 when expressed in the hippocampal and sensory cells conferred only partial protection on the cells. These data support the notion that both of functions of Ape1, redox and repair are necessary for optimal levels of neuronal cell survival.  相似文献   

7.
The aim of this study was to assess the effects of Ca2+ channel antagonist nimodipine (in concentration which competitive inhibited phosphodiesterase 1--PDE1) on oxidative stress alone or under inhibition of nitric oxide synthase by L-NAME in isolated rat heart. The hearts from male Wistar albino rats (n=18, BM about 200 g, age 8 weeks) were retrograde perfused according to the Langendorff technique at gradually increased constant perfusion pressure conditions (CPP, 40-120 cm H2O). The experiments were performed under control conditions, in the presence of Nimodipine (2 microM) or Nimodipine (2 microM) plus L-NAME (30 microM). Coronary flow (CF) varied in the autoregulatory range from 3.7 +/- 0.4 ml/min/g wt at 50 cm H2O to 4.35 +/- 0.79 at 90 cm H2O. Basal nitrite outflow, index of lipid peroxidation (measured as TBARS release) and superoxide anion release (O2-) (at 60 cm H2O) were 0.64 +/- 0.18 nmol/min/g wt, 0.55 +/- 0.13 micromol/min/g wt and 19.72 +/- 3.70 nmol/min/g wt, respectively. Nimodipine induced significant vasodilation at all values of CPP (from 26% at 40 cm H2O to 36% at 120 cm H2O) accompanied with significant decrease of nitrite outflow (from 59% at 40 cm H2O to 40% at 120 cm H2O), significant increase of TBARS above autoregulatory range (about 40%) and significant increase of O2- release (from 186% at 40 cm H2O to 117% at 120 cm H2O). However, perfusion with L-NAME completely reversed the effects of Nimodipine. Nimodipine-induced flow changes were decreased under L-NAME (from 3% at 40 cm H2O to 11% at 120 cm H2O) without changes in the autoregulatory range, accompanied with significantly increased nitrite outflow (from 69% at 40 cm H2O to 36% at 120 cm H2O) and TBARS release (almost 50%), as well as significantly decreased O2- release (from 50% at 40 cm H2O to 43% at 120 cm H20). Our findings show that effect of nimodipine on coronary flow should be significantly influenced by NO, TBARS and O2- release in isolated rat heart.  相似文献   

8.
Isolated murine placental cells obtained at Day 16 of allogeneic gestation (C3H x DBA/2J) were cultured for 3 days alone or in coculture with irradiated mouse splenocytes at the end of which 3H-thymidine was added for an additional 18-h culture to assess cell proliferation. Placental cell proliferation was significantly enhanced at spleen cell:placental cell ratios of 10:1 and 25:1 above that observed in the absence of added spleen cells. The stimulatory effect of irradiated allogeneic (C3H plus Balb/cJ) spleen cell cultures was significantly greater (approximately 2-fold) than that of isogeneic spleen cells (C3H alone). Conditioned medium from murine spleen cells cultured with concanavalin A (ConA) to induce lymphokine production had dose-dependent inhibitory effects on proliferation when added to placental cell cultures over a range of concentrations from 10 to 40% (vol:vol). Addition of pseudo "immune complexes" in the form of heat-aggregated human gamma globulin (AHGG) to culture medium failed to alter placental cell proliferation over a range of concentrations from 2 to 200 micrograms/ml either in the absence or presence of ConA-conditioned medium. In contrast to late-gestational stage placental cells, cell suspensions obtained from Days 8-9 murine ectoplacental cone (EPC) outgrowths, or from earlier stage placentas (Days 12-14) responded to low concentrations of conditioned medium from ConA-stimulated splenocytes with increased proliferation. The effect was less impressive on placental cells at gestational ages later than 12 days than on earlier stage preparations. On all placental cell suspensions tested, as well as EPC cells, a clear-cut inhibition of growth was observed at high doses of conditioned medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of oxidative stress on DNA damage and associated reactions, increased polyadenosine diphosphate-ribose polymerase (PARP) activity and decreased nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP) contents, have been tested in primary cultures of porcine aortic endothelial cells. The cells were treated with 50-500 microM H2O2 for 20 min or 100 microM paraquat for 3 days or were exposed to 95% O2 for 2 and 5 days. The administration of 250-500 microM H2O2 resulted in a marked increase in PARP activity and a profound depletion of ATP and NAD. Although hyperoxia had no effect on PARP activity and reduced only slightly the ATP and NAD stores, it markedly reduced the ability of endothelial cells to increase PARP activity upon exposure to DNase. Paraquat had a similar effect. Human dermal fibroblasts were also exposed to 50-500 microM H2O2 for 20 min or 95% O2 for 5 days. Their response to H2O2 differed from that of endothelial cells by their ability to maintain the ATP content at a normal level. Fibroblasts were also insensitive to the effect of hyperoxia. These results suggest that the oxidant-related DNA damage is a function of the type of oxidative stress used and may be cell-specific.  相似文献   

10.
Various concentrations of oxygen were used to determine the optimum culture medium PO2 for survival and proliferation of attached human and mouse fibroblasts grown from different inoculum sizes. When T-15 flasks were seeded with less than or equal to 2 X 10(4) cells (less than or equal to 1.3 X 10(3) cells/cm2), the highest plating efficiencies and cell yields were obtained with a culture medium PO2 of 40-60 mm Hg. At higher inoculum sizes (10(5) cells per T-15) used routinely for mass cultured, no difference in cell yield or glycolytic activity was observed between cultures gassed with atmospheric, i.e., 18% O2 (growth medium PO2 approximately equal to 125-135 mm Hg) and those gassed with 1% O2 (growth medium PO2 approximately euqal to 40-60 mm Hg). The enhanced clonal growth observed at the latter PO2 results from an increased proliferation rate rather than more efficient attachment and survival of inoculated cells. Glucose uptake and lactic acid accumulation were increased in sparse cultures sparged with 1% O2. A slight extension of lifespan was observed in WI-38 cells serially subcultured with a gas phase of 1% O2.  相似文献   

11.
The influence of H2O2 at concentrations of 10(-8)--10(-2) mol/l on neutrophil ability to generate the reactive oxygen and chlorine species (ROCS) and secrete myeloperoxidase (MPO) was studied, and H202 injurious effect on neutrophils was also investigated in this work. It was revealed that H2O2 at concentrations of 2 x 10(-3)--2 x 10(-2) mol/l induced disturbance of the neutrophil membrane barrier properties and lactate dehydrogenase release. The incubation of the neutrophils with the addition of 10(-4)--10(-7) mol/l H2O2 led to an increase in the cell ability to generate ROCS during phagocytosis and decreased neutrophil ability to secrete MPO and ROCS in extracellular medium during adhesion. The mechanisms of H2O2 effect are coupled with arachidonic acid metabolism. Inhibition of metabolic pathways of 5-lipoxygenase or cyclooxygenase increased the destructive effect of H2O2 on the cells. Five-lipoxygenase way prohibition led to cancellation of H2O2 influence on MPO and ROCS secretion and to enhancement of H2O2 effect on neutrophil ability to generate ROCS during phagocytosis. The data obtained testify to the high neutrophil resistance to destructive effect of H2O2 and confirm the regulatory role of H2O2 with respect to the neutrophil functions.  相似文献   

12.
H2O2 production by certain Lactobacillus strains is one of the mechanisms that helps to regulate the vaginal ecosystem. This paper describes the kinetics of H2O2 production by two different strains of Lactobacillus paracasei subsp. paracasei under different culture conditions and the effect of this metabolite on the growth of Staphylococcus aureus. L. paracasei F2 produced 2.72 mmol 1-1 H2O2 while L. paracasei F28 produced 1.84 mmol l(-1), both in agitated cultures. Although L. paracasei F2 produced a higher H2O2 concentration than L. paracasei F28, H2O2 production per number of live bacterial cells was 10-fold higher for F28. The latter also showed a faster decrease in viability during the stationary phase. There were no detectable levels of H2O2 in cultures without agitation. H2O2-producing lactobacilli inhibited growth of S. aureus in a plaque assay and in mixed cultures, depending on the initial inoculum of the pathogen.  相似文献   

13.
Algal cells have developed different strategies to cope with the common environmentally promoted generation of H(2)O(2), which include induction of catalase (CAT) and ascorbate peroxidase (APX), massive H(2)O(2) release in seawater, and synthesis of volatile halocarbons by specific peroxidases. The antioxidant adaptability of the economically important carrageenophyte Kappaphycus alvarezii (Doty) Doty (Gigartinales: Rhodophyta) was tested here against exposure to clofibrate (CFB), a known promoter of peroxisomal beta-oxidation in mammals and plants. Possibly as a consequence of CFB-induced H2O2 peroxisomal production, the maximum concentration of H(2)O(2) in the seawater of red algae cultures was found to occur (120+/-17 min) after the addition of CFB, which was followed by a significant decrease in the photosynthetic activity of PSII after 24 h. Interestingly, 4 h after the addition of CFB, the total SOD activity was about 2.5-fold higher than in the control, whereas no significant changes were observed in lipoperoxidation levels (TBARS) or in CAT and APX activities. The two H(2)O(2)-scavenging enzymes were only induced later (after 72 h), whereupon CAT showed a dose-dependent response with increasing concentrations of CFB. A more pronounced increase of TBARS concentration than in the controls was evidenced when a 50 microM Fe(2+/3+) solution (3:2 ratio) was added to CFB-treated cultures, suggesting that the combination of exacerbated H(2)O(2) levels in the seawater-in this work, caused by CFB exposure-and Fenton-reaction catalyst (ferric/ferrous ions), imposes harsh oxidative conditions on algal cultures. The bulk of data suggests that K. alvarezii possesses little ability to promptly induce CAT and APX compared to the immediately responsive antioxidant enzyme SOD and, to avoid harmful accumulation of H(2)O(2), the red alga presumably releases H(2)O(2) into the surrounding medium as an alternative mechanism.  相似文献   

14.
15.
Hydrogen peroxide is a well-known mediator of apoptosis. As a mechanism for H202-induced apoptosis, both a mitochondrial Cyt.c-dependent pathway and a lysosome-mediated pathway have been suggested. However, the relative roles of and the relation between these two pathways in H2O2-induced apoptosis remain to be discovered. In this study, to find the relative roles of the lysosomal and mitochondrial pathways, the effects of E-64-d, a cell-permeable inhibitor of lysosomal cysteine proteases, on apoptosis caused by H2O2 in HL-60 cells were investigated. It was found that the concentration of H2O2 strongly affected the inhibitory effect of E-64-d on the apoptosis in HL-60 cells: dose-dependent inhibition (up to 40%) of both DNA fragmentation and caspase-3 activation was observed when a high concentration of H2O2 (50 microM) was used to induce apoptosis, but no inhibitory effect was detected when a low concentration (10 microM) was used. Consistent with these observations, apparent lysosomal destabilization was observed only with 50 microM H2O2. The release of mitochondrial Cyt.c, in contrast, was observed at both 10 microM and 50 microM. These results indicated that the mitochondrial Cyt.c-mediated pathway predominates in the H202-induced apoptosis in HL-60 cells and the lysosomal mediated pathway is partially involved when high concentrations of H2O2 are used to induce apoptosis.  相似文献   

16.
Bacterial isolates Comamonas terrigena N3H (from soil contaminated with crude oil) and C. testosteroni (isolated from the sludge of a wastewater treatment plant), exhibit much higher total catalase activity than the same species from laboratory collection cultures. Electrophoretic resolution of catalases revealed only one corresponding band in cell-free extracts of both C. testosteroni cultures. Isolates of C. terrigena N3H exhibited catalase-1 and catalase-2 activity, whereas in the collection culture C. terrigena ATCC 8461 only catalase-1 was detected. The environmental isolates exhibited much higher resistance to exogenous H2O2 (20, 40 mmol/L) than collection cultures, mainly in the middle and late exponential growth phases. The stepwise H2O2-adapted culture of C. terrigena N3H, which was more resistant to oxidative stress than the original isolate, exhibited an increase of catalase and peroxidase activity represented by catalase-1. Pretreatment of cells with 0.5 mmol/L H2O2 followed by an application of the oxidative agent in toxic concentrations (up to 40 mmol/L) increased the rate of cell survival in the original isolate, but not in the H2O2-adapted variant. The protection of bacteria caused by such pretreatment corresponded with stimulation of catalase activity in pretreated culture.  相似文献   

17.
The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors.  相似文献   

18.
The aim of this study was to assess the changes of coronary flow (CF) and nitrite outflow under inhibition of nitric oxide synthase (NOS) by Nomega-nitro-L-arginine monomethyl ester (L-NAME) or lipoxygenase (LOX) induced by nordihydroguaiaretic acid (NDGA) in isolated rat heart. The hearts of male Wistar albino rats (n=18, age 8 weeks, body mass 180-200 g) were retrograde perfused according to the Langendorff's technique at gradually increased constant coronary perfusion pressure (CPP) conditions (40-120 cm H2O) which induced flow-dependent nitric oxide (NO) release (nitrite outflow). The experiments were performed during control conditions, in the presence of NO synthesis inhibitor L-NAME (30 micromol/l) or nonspecific LOX inhibitor (NDGA, 0.1 mmol/l) which were administered separately or in combination. CF varied in autoregulatory range from 4.12+/-0.26 ml/min/g wt at 50 cm H2O to 5.22+/-0.26 ml/min/g wt at 90 cm H2O. In autoregulatory range, nitrite outflow varied from 2.05+/-0.17 nmol/min/g wt at 50 cm H2O to 2.52+/-0.21 nmol/min/g wt at 90 cm H2O and was strictly parallel with CPP/CF curve. The autoregulatory range of CF was significantly extended (40-100 cm H2O, 2.22+/-0.12 ml/min/g wt and 2.90+/-0.25 ml/min/g wt, respectively) under the influence of L-NAME. Hemodynamic effects were accompanied by significant decrease in nitrite outflow after L-NAME administration (0.56+/-0.11 nmol/min/g wt at 40 cm H2O to 1.45+/-0.14 nmol/min/g wt at 100 cm H2O). NDGA affected CF in the range of CPP 40-70 cm H2O only (from 42% at 50 cm H2O to 12% at 90 cm H2O, respectively) with no significant changes in nitrite outflow. When L-NAME was applied in combination with NDGA vs. NDGA only, CF was significantly reduced (from 34% at 50 cm H2O to 50% at 90 cm H2O, respectively) with parallel changes in nitrite outflow (from 40% at 50 cm H2O to 51% at 90 cm H2O, respectively). The results showed that CF and nitrite outflow could be decreased under L-NAME administration. Nonselective LOX inhibitor (NDGA) decreased control values of CF only at lower values of CPP but did not change nitrite outflow indicating antioxidant properties of NDGA. In addition, L-NAME decreased the effects induced by NDGA on CF and nitrite outflow indicating the role of NO.  相似文献   

19.
目的:探讨蓝莓提取物对过氧化氢致大鼠海马神经元氧化应激损伤的减缓作用。方法:将培养7d的海马神经细胞分为8组:①过氧化氢组(H2O2):培养液中加入50μmol/L的H2O2,作用24h。②不同剂量蓝莓提取物预处理组(BE+H2O2):在加入H2O2前24h,分别加入0.01、0.1、1.0、10.0、20.0和40.0μg/mlBE。③空白对照组(Control):处理步骤同上组,但每次处理物质均为等量的培养液。通过测定细胞存活率和上清液中乳酸脱氢酶(LDH)的活性确定减轻海马神经元损伤的蓝莓提取物的适宜浓度。并检测细胞内丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性以及细胞凋亡率的变化。结果:①蓝莓提取物组(0.1,1.0和10.0μg/mlBE)LDH活性显著低于H2O2组,细胞存活率由H2O2组的57.44%分别上升至78.42%、87.71%、72.40%;1μg/ml蓝莓提取物组对H2O2诱导的海马神经细胞氧化应激损伤的保护作用最好。②1μg/ml蓝莓提取物组海马神经细胞培养上清液中MDA含量及细胞凋亡率显著低于H2O2组,SOD活性显著高于H2O2组。结论:适宜剂量的蓝莓提取物对氧化应激损伤的海马神经元有一定的保护作用,其机制可能与抑制海马神经元凋亡、增强神经细胞的抗氧化功能有关。  相似文献   

20.
The study was undertaken to investigate the modulating effect of nicotinamide (NAm) in different concentrations and under different glucose concentrations on the viability and oxidative stress induced by streptozotocin (STZ, 5 mmol/l) and hydrogen peroxide (H2O2, 100 micromol/l) on isolated rat pancreatic cells of the Langerhans islets in vitro. Cell viability did not depend on the concentration of glucose in the range of 5-20 mmol/l, and in subsequent studies we used glucose in concentration of 10 mmol/l to protect cells against its hypo- and hyperglycemic action. Cytoprotective effect of NAm in concentrations from 5 to 20 mmol/l on cells survival was the same. It was found that the destructive action of STZ and H2O2 during 24 hours on isolated cells of the pancreas resulted in the significant cell death. It was revealed that NAm in concentration of 5 mmol/l not only had cytoprotective effects against STZ and H2O2 but also partially reduced the level of oxidative stress in the investigated cells induced by these compounds. High concentration of NAm, 35 mmol/l, causes cytotoxic effect on the viability of pancreatic islet cells and increase of oxidative stress induced by STZ and H2O2. Most likely these effects could be associated with direct modulatory action of NAm on important effector mechanisms involved in cell death, including PARP-dependent processes, or/and indirectly, through metabolic and antioxidant effects of the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号