首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well-established that bacterial and viral infections have an exacerbating effect on allergic asthma, particularly aggravating respiratory symptoms, such as airway hyperresponsiveness (AHR). The mechanism by which these infections alter AHR is unclear, but some studies suggest that Toll-like receptors (TLRs) play a role. In this study, we investigated the impact of TLR3 and TLR4 ligands on AHR and airway inflammation in a model of pre-established allergic inflammation. Female BALB/c mice were sensitised and challenged intranasally (i.n.) with either PBS or ovalbumin (OVA) and subsequently i.n. challenged with poly (I:C) (TLR3) or LPS (TLR4) for four consecutive days. The response to methacholine was measured in vivo; cellular and inflammatory mediators were measured in blood, lung tissue and broncheoalveolar lavage fluid (BALF). OVA challenge resulted in an increase in AHR to methacholine, as well as increased airway eosinophilia and TH2 cytokine production. Subsequent challenge with TLR agonists resulted in a significant increase in AHR, but decreased TLR-specific cellular inflammation and production of immune mediators. Particularly evident was a decline in LPS-induced neutrophilia and neutrophil-associated cytokines following LPS and poly (I:C) treatment. The present data indicates that TLRs may play a pivotal role in AHR in response to microbial infection in allergic lung inflammation. These data also demonstrate that aggravated AHR occurs in the absence of an exacerbation in airway inflammation and that allergic inflammation impedes a subsequent inflammatory response to TLRs. These results may parallel clinical signs of microbial asthma exacerbation, including an extended duration of illness and increased respiratory symptoms.  相似文献   

2.
Aberrant innate and adaptive immune responsed to allergens and environmental pollutants lead to respiratory allergic disease such as asthma. In this study, we focused on toll-like receptor-4 (TLR4) expressed on airway epithelium to identify house dust mite (HDM)-regulated allergic inflammation via TLR4 signaling pathway and the triggering to alveolar macrophages (AM)-driven adaptive immune response. The authors found that mouse exposed to HDM showed more eosinophils, neutrophils, monocytes, lymphocytes as well as total cells in bronchoalveolar lavage fluid (BALF) confirmed by flow cytometry. Besides, the expression of TLR4 in airway epithelial cells was significantly increased in both mRNA and protein levels in mice treated with HDM and the expression of CD40 and CD86 in AM was also increased in mice exposed to HDM. Tight correlation between TLR4 protein and CD40, CD86 in AM was identified. This study demonstrates that TLR4 expression on airway epithelium played an essential role in HDM-induced activation of AM in immune responses and allergic inflammation. The airway epithelial TLR4 signaling pathway revealed tight connection between endotoxin exposure and asthma prevalence in the clinic.  相似文献   

3.
Based on epidemiological data, the hygiene hypothesis associates poor hygienic living conditions during childhood with a lower risk for the development of allergic diseases such as bronchial asthma. The role of viral infections, and especially of viral TLR ligands, within this context remains to be clarified. Viral TLR ligands involve dsRNA and ssRNA which are recognized by TLR-3 or TLR-7, respectively. In this study, we evaluated the impact of TLR-3 or TLR-7 activation on experimental asthma in mice. Systemic application of the synthetic TLR-3 or TLR-7 ligands polycytidylic-polyinosinic acid (p(I:C)) or R-848, respectively, during the sensitization phase prevented the production of OVA-specific IgE and IgG1 Abs and subsequently abolished all features of experimental asthma including airway hyperresponsiveness and allergic airway inflammation. Furthermore, administration of p(I:C) or R-848 to animals with already established primary allergic responses revealed a markedly reduced secondary response following allergen aerosol rechallenges. In contrast to wild-type animals, application of p(I:C) or R-848 to IL-12p35(-/-) mice had no effect on airway inflammation, goblet cell hyperplasia, and airway hyperresponsiveness. However, in the absence of IL-12, the numbers of eosinophils and lymphocytes in bronchoalveolar lavage fluids were still significantly reduced. These partial effects could also be abolished by neutralizing anti-IL-10 Abs in IL-12p35(-/-) mice. These data indicate that TLR-3 or TLR-7 activation by viral TLR ligands has both preventive as well as suppressive effects on experimental asthma which is mediated by the additive effects of IL-12 and IL-10.  相似文献   

4.
The original hygiene hypothesis suggests that early childhood respiratory infections preceding allergen exposure may decrease the prevalence of allergic diseases. We have recently demonstrated that Mycoplasma pneumoniae infection preceding allergen exposure reduced allergic responses in mice. However, the molecular mechanisms underlying the protective role of M. pneumoniae in allergic responses, particularly airway mucin production, remain unclear. Wild-type and Toll-like receptor 2 (TLR2)-deficient mice with a respiratory M. pneumoniae infection preceding allergen (ovalbumin) challenge were utilized to determine the regulatory role of TLR2-IFN-gamma signaling pathway in airway mucin expression. Furthermore, air-liquid interface cultures of mouse primary tracheal epithelial cells were performed to examine the effects of IFN-gamma on mucin expression. In wild-type mice, M. pneumoniae infection preceding allergen challenge significantly reduced airway mucins but increased IFN-gamma. In sharp contrast, in TLR2-deficient mice, M. pneumoniae preceding allergen challenge resulted in increased mucin protein without a noticeable change of IFN-gamma. In cultured mouse primary tracheal epithelial cells, IFN-gamma was shown to directly inhibit mucin expression in a dose-dependent manner. Our study demonstrates for the first time that a respiratory M. pneumoniae infection preceding allergen challenge reduces airway epithelial mucin expression in part through TLR2-IFN-gamma signaling pathway. A bacterial infection in asthmatic subjects with weakened TLR2-IFN-gamma signaling may result in an exaggerated airway mucin production.  相似文献   

5.
Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.  相似文献   

6.

Background

Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity.

Methods and Findings

Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists.

Conclusions/Significance

These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies.  相似文献   

7.
8.
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.  相似文献   

9.
TLR3, one of the TLRs involved in the recognition of infectious pathogens for innate and adaptive immunity, primarily recognizes viral-associated dsRNA. Recognition of dsRNA byproducts released from apoptotic and necrotic cells is a recently proposed mechanism for the amplification of toxicity, suggesting a pivotal participation of TLR3 in viral infection, as well as in lung diseases where apoptosis plays a critical role, such as asthma and chronic obstructive pulmonary disease. In addition to metabolic control, insulin signaling was postulated to be protective by inhibiting apoptosis. Therefore, we explored the role of insulin signaling in protecting against TLR3-mediated apoptosis of human bronchial epithelial cells. Significant TLR3-mediated apoptosis was induced by polyinosinic-polycytidylic acid, a dsRNA analog, via caspase-8-dependent mechanisms. However, insulin efficiently inhibited TLR3/polyinosinic-polycytidylic acid-induced human bronchial epithelial cell apoptosis via PI3K/Akt and ERK pathways, at least in part, via upregulation of cellular FLIPs and through protein synthesis-independent mechanisms. These results indicate the significance of TLR3-mediated dsRNA-induced apoptosis in the pathogenesis of apoptosis-driven lung disease and provide evidence for a novel protective role of insulin.  相似文献   

10.
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.  相似文献   

11.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.  相似文献   

12.
Low circulating levels of 25-hydroxyvitamin D [25(OH)D] are associated with chronic lung diseases such as asthma. However, it is unclear whether vitamin D is involved in disease pathogenesis or is modified by the inflammation associated with the disease process. We hypothesized that allergic inflammation decreases the level of circulating 25(OH)D and tested this using a mice model of house dust mite (HDM) induced allergic airway inflammation. Cellular influx was measured in bronchoalvelar lavage (BAL) fluid, and allergic sensitization and 25(OH)D levels were measured in serum. Exposure to HDM caused a robust inflammatory response in the lung that was enhanced by prior influenza infection. These responses were not associated with any change in circulating levels of 25(OH)D. These data suggest that alterations in circulating 25(OH)D levels induced by Th-2 driven inflammation are unlikely to explain the cross-sectional epidemiological association between vitamin D deficiency and asthma.  相似文献   

13.
Bronchial asthma and allergic diseases are orchestrated by T-cells producing T-helper type 2 (Th2) cytokines, such as interleukin-4 (IL-4) and IL-5, and are inhibited by Th1 responses. Helicobacter pylori has chronically infected the human population for c . 100 000 years and preferentially elicits a Th1 mucosal immune response with the production of interferon-γ and IL-12. Among several bacterial factors, the neutrophil-activating protein of H. pylori (HP-NAP) not only plays a key role in driving Th1 inflammation but it is also able to inhibit Th2 responses in vitro and in vivo in allergic bronchial asthma, in humans and mice. Both systemic and mucosal administrations of HP-NAP are successful in reducing eosinophilia, immunoglobulin E and systemic Th2 cytokines at the bronchial level. Thus, these results identify HP-NAP as a candidate for novel strategies for the prevention and treatment of allergic diseases.  相似文献   

14.
The airway plays a vital role in allergic lung diseases by responding to inhaled allergens and initiating allergic inflammation. Various proinflammatory functions of the airway epithelium have been identified, but, equally important, anti-inflammatory mechanisms must also exist. We show in this study that syndecan-1, the major heparan sulfate proteoglycan of epithelial cells, attenuates allergic lung inflammation. Our results show that syndecan-1-null mice instilled with allergens exhibit exaggerated airway hyperresponsiveness, glycoprotein hypersecretion, eosinophilia, and lung IL-4 responses. However, administration of purified syndecan-1 ectodomains, but not ectodomain core proteins devoid of heparan sulfate, significantly inhibits these inflammatory responses. Furthermore, syndecan-1 ectodomains are shed into the airway when wild-type mice are intranasally instilled with several biochemically distinct inducers of allergic lung inflammation. Our results also show that syndecan-1 ectodomains bind to the CC chemokines (CCL7, CCL11, and CCL17) implicated in allergic diseases, inhibit CC chemokine-mediated T cell migration, and suppress allergen-induced accumulation of Th2 cells in the lung through their heparan sulfate chains. Together, these findings uncover an endogenous anti-inflammatory mechanism of the airway epithelium where syndecan-1 ectodomains attenuate allergic lung inflammation via suppression of CC chemokine-mediated Th2 cell recruitment to the lung.  相似文献   

15.
Excessive airway mucin production contributes to airway obstruction in lung diseases such as asthma and chronic obstructive pulmonary disease. Respiratory infections, such as atypical bacterium Mycoplasma pneumoniae (Mp), have been proposed to worsen asthma and chronic obstructive pulmonary disease in part through increasing mucin. However, the molecular mechanisms involved in infection-induced airway mucin overexpression remain to be determined. TLRs have been recently shown to be a critical component in host innate immune response to infections. TLR2 signaling has been proposed to be involved in inflammatory cell activation by mycoplasma-derived lipoproteins. In this study, we show that TLR2 signaling is critical in Mp-induced airway mucin expression in mice and human lung epithelial cells. Respiratory Mp infection in BALB/c mice activated TLR2 signaling and increased airway mucin. A TLR2-neutralizing Ab significantly reduced mucin expression in Mp-infected BALB/c mice. Furthermore, Mp-induced airway mucin was abolished in TLR2 gene-deficient C57BL/6 mice. Additionally, Mp was shown to increase human lung A549 epithelial cell mucin expression, which was inhibited by the overexpression of a human TLR2 dominant-negative mutant. These results clearly demonstrate that respiratory Mp infection increases airway mucin expression, which is dependent on the activation of TLR2 signaling.  相似文献   

16.
17.
Hyaluronan (HA) has diverse functions in normal lung homeostasis and pulmonary disease. HA constitutes the major glycosaminoglycan in lung tissue, with HA degradation products, produced by hyaluronidase enzymes and reactive oxygen species, being implicated in several lung diseases, including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. The differential activities of HA and its degradation products are due, in part, to regulation of multiple HA-binding proteins, including cluster of differentiation 44 (CD44), Toll-like receptor 4 (TLR4), HA-binding protein 2 (HABP2), and receptor for HA-mediated motility (RHAMM). Recent research indicates that exogenous administration of high-molecular-weight HA can serve as a novel therapeutic intervention for lung diseases, including lipopolysaccharide (LPS)-induced acute lung injury, sepsis/ventilator-induced lung injury, and airway hyperreactivity. This review focuses on the regulatory role of HA and HA-binding proteins in lung pathology and discusses the capacity of HA to augment and inhibit various lung diseases.  相似文献   

18.
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.  相似文献   

19.
Experimental and clinical data strongly support a role for the eosinophil in the pathogenesis of asthma, allergic and parasitic diseases, and hypereosinophilic syndromes, in addition to more recently identified immunomodulatory roles in shaping innate host defense, adaptive immunity, tissue repair/remodeling, and maintenance of normal tissue homeostasis. A seminal finding was the dependence of allergic airway inflammation on eosinophil-induced recruitment of Th2-polarized effector T-cells to the lung, providing a missing link between these innate immune effectors (eosinophils) and adaptive T-cell responses. Eosinophils come equipped with preformed enzymatic and nonenzymatic cationic proteins, stored in and selectively secreted from their large secondary (specific) granules. These proteins contribute to the functions of the eosinophil in airway inflammation, tissue damage, and remodeling in the asthmatic diathesis. Studies using eosinophil-deficient mouse models, including eosinophil-derived granule protein double knock-out mice (major basic protein-1/eosinophil peroxidase dual gene deletion) show that eosinophils are required for all major hallmarks of asthma pathophysiology: airway epithelial damage and hyperreactivity, and airway remodeling including smooth muscle hyperplasia and subepithelial fibrosis. Here we review key molecular aspects of these eosinophil-derived granule proteins in terms of structure-function relationships to advance understanding of their roles in eosinophil cell biology, molecular biology, and immunobiology in health and disease.  相似文献   

20.
Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4+ T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号