首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple endocrine neoplasia type 1 (MEN1) is a hereditary syndrome characterized by the occurrence of multiple endocrine tumors of the parathyroid, pancreas, and anterior pituitary in patients. To study tumorigenesis related to the MEN1 syndrome, we have generated Men1 knockout mice using the gene targeting approach. Heterozygous Men1 mutant mice developed the same range of major endocrine tumors as is seen in MEN1 patients, affecting the parathyroid, pancreatic islets, pituitary and adrenal glands, as well as the thyroid, and exhibiting multistage tumor progression with metastatic potential. In particular, extrapancreatic gastrinoma, pancreatic glucagonoma, and mixed hormone-producing tumors in islets were observed. In addition, there was a high incidence of gonadal tumors of endocrine origin, i.e. Leydig cell tumors, and ovary sex-cord stromal cell tumors in heterozygous Men1 mutant mice. Hormonal disturbance, such as abnormal PTH and insulin levels, was also observed in these mice. These tumors were associated with loss of heterozygosity of the wild-type Men1 allele, suggesting that menin is involved in suppressing the development of these endocrine tumors. All of these features are reminiscent of MEN1 symptoms in humans and establish heterozygous Men1 mutant mice as a suitable model for this disease.  相似文献   

2.
Multiple endocrine neoplasia type 1 (MEN1) is a rare but informative syndrome for endocrine tumorigenesis. Since its isolation, several groups have begun to determine the role of menin, the protein product of MEN1, in sporadic endocrine tumors as well as tumors of the MEN1 syndrome. Mutations of menin have been reported in more than 400 families and tumors, most of which are truncating mutations, thus supporting the function of menin as a tumor suppressor. The exact function of menin is unknown, but overexpression of menin inhibits proliferation of Ras-transformed NIH3T3 cells. Since menin interacts with proteins from both the TGF beta and AP-1 signaling pathways, perhaps its tumor suppressor function is related to these key cell growth pathways. In this review we will discuss the various clinical manifestations of MEN1 syndrome, potential mechanisms of MEN1 tumorigenesis, and mutations associated with MEN and sporadic endocrine tumors.  相似文献   

3.
1型多发性内分泌瘤综合征(multiple endocrine neoplasia type1,MEN1)是一种主要以累及甲状旁腺、胰岛细胞和垂体的家族性常染色体显性遗传性肿瘤疾病,其致病基因是Men1的基因突变。目前在MEN1患者中发现了大量Men1基因突变位点,其中9个位点突变频率较高,占据所有胚系细胞突变的20%,同时,MEN1患者中还存在Men1基因大片段的外显子缺失,具有外显率高和临床表现多样化的特点,与1型多发性内分泌瘤以及零散型内分泌肿瘤都可能相关。因此,在部分疑似MEN1患者中开展Men1基因变异分析可辅助确诊,在Men1基因突变携带者及其家属中开展Men1变异筛选将有助于对MEN1发生做好提前预防和治疗。  相似文献   

4.
Summary Gastrinomas are pancreatic endocrine neoplasms that arise either sporadically or are inherited as part of the multiple endocrine neoplasia type I syndrome (MEN I). Loss of heterozygosity (LOH) in the region flanking the MEN I gene at chromosome 11q13 has been documented in a few sporadic and familial pancreatic endocrine tumors, but not previously in sporadic gastrinomas. It has therefore been suggested that gastrinomas develop by a mechanism different from other tumors associated with the MENI syndsrome. We report LOH on chromosome 11 in 5 of 11 sporadic gastrinomas. Four of these tumors have LOH for markers flanking the MEN I region. Molecular evaluation of segments of chromosomes 3, 13, and 17 known to contain cloned or putative tumor suppressor genes fail to show LOH except at one locus in one tumor. These data suggest that a tumor suppressor DNA segment exists at 11q13 that may be involved in the development of sporadic gastrinomas.  相似文献   

5.
Wu T  Huang XH 《生理学报》2011,63(6):555-564
多发性内分泌肿瘤1-(multiple endocrine neoplasia type 1,MEN1)是一种常染色体显性遗传的肿瘤综合征,患者常表现出多发性的内分泌器官肿瘤,包括垂体瘤、甲状旁腺瘤和胰岛瘤.抑癌基因Men1的突变导致MENl的发生,其编码的蛋白为核蛋白menin.Menin可以抑制包括胰岛β细胞在内的...  相似文献   

6.
7.
ObjectiveMultiple endocrine neoplasia type 1 (MEN1) is a rare genetic syndrome characterized by parathyroid, anterior pituitary, and/or duodenopancreatic neuroendocrine tumors. Studies have indicated that investigating primary hyperparathyroidism (pHPT) with subsequent genetic screening may be an essential tool for the early diagnosis of MEN1 in patients with pituitary tumors (PTs). This study aimed to investigate the presence of pHPT in patients with PTs and, subsequently, to screen for genetic mutations and related tumors in patients with MEN1 syndrome.MethodsThis study included 255 patients with PTs who were assessed for the presence of MEN1 by serum calcium and parathyroid hormone measurements. Mutation screening of the MEN1, CDKN1B, and AIP genes was performed in the index cases showing the MEN1 phenotype.ResultsFive patients with PTs presented a clinical condition compatible with MEN1. These patients had a younger age of onset and a more severe clinical condition. Genetic analysis identified a frameshift mutation in the MEN1 gene in one of the cases with the MEN1 phenotype, but point mutations in CDKN1B and AIP were not detected in any of these patients.ConclusionOur results show that periodic screening for pHPT in patients with PTs may be useful to detect MEN1 syndrome; thus, it is recommended in those patients with both findings a genetic analysis of MEN1 gene and an additional search of related tumors. By contrast, our data suggest that CDKN1B and AIP mutations do not seem to play a relevant role in the pathogenesis of MEN1.  相似文献   

8.
《Endocrine practice》2009,15(7):737-749
ObjectiveTo report 3 cases of primary neuroendocrine tumors (PNT) of the extrahepatic biliary tree (EHBT) in patients with Zollinger-Ellison syndrome (ZES), 2 of whom had multiple endocrine neoplasia type 1 (MEN 1).MethodsThree new cases of gastrin-producing tumors of the EHBT are presented, and the pertinent literature relating to PNT of the EHBT is reviewed.ResultsEighty-one previous cases of PNT of the EHBT have been reported in the world literature, 7 of which were hormonally active and associated with peptic ulcer disease, diarrhea, or ZES. Three additional patients presented to us with ZES due to PNT of the EHBT. One patient with MEN 1 was treated with a Whipple procedure for a common bile duct gastrinoma. A second patient underwent left hepatectomy with resection of the confluence of the right and left hepatic ducts for a primary left hepatic duct gastrinoma. The second patient with MEN 1 underwent resection of a gastrinoma at the junction of the cystic duct and the common bile duct.ConclusionAlthough PNT of the EHBT are uncommon, the association with ZES is even more so. Often, nonfunctioning tumors are diagnosed late in the course of the disease from symptoms related to biliary obstruction. Patients with ZES may be diagnosed earlier because of symptoms resulting from gastrin excess. Surgical resection is the only chance for cure and is often helpful in the palliation of symptoms. (Endocr Pract. 2009;15:737-749)  相似文献   

9.
Various genetic loci harboring oncogenes, tumor suppressor genes, and genes for calcium receptors have been implicated in the development of parathyroid tumors. We have carried out loss of heterozygosity (LOH) studies in chromosomes 1p, 1q, 3q, 6q, 11q, 13q, 15q, and X in a total of 89 benign parathyroid tumors. Of these, 28 were sporadic parathyroid adenomas from patients with no family history of the disease, 41 were secondary parathyroid tumors, 5 were from patients with a history of previous irradiation to the neck, 12 were from patients with a family history of hyperparathyroidism, and 3 were parathyroid tumors related to multiple endocrine neoplasia type 1 (MEN1). In addition, we determined the chromosomal localization of a second putative calcium-sensing receptor, CaS, for inclusion in the LOH studies. Based on analysis of somatic cell hybrids and fluorescent in situ hybridization to metaphase chromsomes, the gene for CaS was mapped to chromosomal region 2q21-q22. The following results were obtained from the LOH studies: (1) out of the 24 tumors that showed LOH, only 4 had more than one chromosomal region involved, (2) in the tumours from uremic patients, LOH of chromosome 3q was detected in a subset of the tumors, (3) LOH of the MEN1 region at 11q13 was the most common abnormality found in both MEN1-related and sporadic parathyroid tumours but was not a feature of the other forms of parathyroid tumors, (4) LOH in 1p and 6q was not as frequent as previously reported, and (5) tumor suppressor genes in 1q and X might have played a role, particularly on the X chromosome, in the case of familial parathyroid adenomas. We therefore conclude that the tumorigenesis of familial, sporadic, and uremic hyperparathyroidism involves different genetic triggers in a non-progressive pattern. Received: 28 October 1996 / Revised: 16 November 1996  相似文献   

10.
INTRODUCTION: The aim of this study was to analyse the distribution and frequency of mutations and their correlations with clinical phenotypes of patients with MTC, to reveal the differences between sporadic and familial type of MTC, and to describe the phenotypes of patients. MATERIALS AND METHODS: 212 patients with medullary thyroid cancer (MTC) were treated in Cancer Centre in Warsaw between 1997 and 2005. In most patients, DNA isolated from peripheral blood leukocytes was tested for RET gene mutations by sequencing and accordingly MTC form was assessed. Genetic testing was performed in the relatives of patients with familial MTC in order to distinguish asymptomatic mutation carriers from noncarriers. RESULTS: RET gene mutations were identified in 46 patients (22%). The others were found noncarriers and sporadic MTC was diagnosed. MEN 2A/FMTC syndrome (multiple endocrine neoplasia type 2A/ familial type of MTC) was diagnosed in 44 patients, MEN 2B syndrome (multiple endocrine neoplasia type 2B) in 2 patients. In patients with sporadic and familial MTC, age at diagnosis and multifocal occurrence was analysed, and the results were found to be in accordance with those of other research centres. However, the distribution and frequency of mutations, as well as some clinical data, such as the frequency of pheochromocytoma occurrence as the first manifestation of MEN syndrome, differed from the published data, and further studies are necessary to reveal the reasons of these differences. CONCLUSIONS: DNA testing for RET gene mutations is reliable as a diagnostic tool and therefore it should be performed for screening of all patients with MTC or other diseases of MEN syndrome.  相似文献   

11.
The discovery of mutations of the menin gene in a few multiple endocrine neoplasma type 1 (MEN I)-associated lipomas and loss of heterozygosity (LOH) on chromosome 11q13 in some sporadic lipomas has stimulated the hypothesis that lipomas may belong to the group of sporadic tumors caused by defects of the gene responsible for MEN I. Since it is unclear if the above hypothesis applies to all patients with lipoma or just to specific subsets, we searched to enlarge the database on this topic. For this purpose, we identified two patients with multiple cutaneous lipomas. One had an additional pituitary adenoma and familial presentation of multiple lipomas, the other had recurrent goiter in the setting of a family history of adenomatous goiter. Deoxyribonucleic acid (DNA) was analyzed by complete direct DNA sequencing of all coding exons and splice junctions of the MEN I gene. No mutation was identified in the coding exons of the menin gene. In contrast to former data on sporadic lipomas, these data are the first to render evidence that mutations of the MEN I gene may not be responsible for the formation of multiple lipomas, even if they appear in the context of other endocrine tumors.  相似文献   

12.
Various molecular and cellular alterations of the cyclic adenosine monophosphate (cAMP) pathway have been observed in endocrine tumors. Since protein kinase A (PKA) is a central key component of the cAMP pathway, studies of the alterations of PKA subunits in endocrine tumors reveal new aspects of the mechanisms of cAMP pathway alterations in human diseases. So far, most alterations have been observed for the regulatory subunits, mainly PRKAR1A and to a lower extent, PRKAR2B. One of the best examples of such alteration today is the multiple neoplasia syndrome Carney complex (CNC). The most common endocrine gland manifestations of CNC are pituitary GH-secreting adenomas, thyroid tumors, testicular tumors, and ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) are observed in about two-third of CNC patients, and also in patients with isolated PPNAD. PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic endocrine tumors. More than 120 different PRKAR1A mutations have been found today. Most of them lead to an unstable mutant mRNA, which will be degraded by nonsense mediated mRNA decay. In vitro and in vivo functional studies are in progress to understand the mechanisms of endocrine tumor development due to PKA regulatory subunits inactivation. PRKAR1A mutations stimulate in most models PKA activity, mimicking in some way cAMP pathway constitutive activation. Cross-talks with other signaling pathways summarized in this review have been described and might participate in endocrine tumorigenesis.  相似文献   

13.
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson's two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3'UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a "negative feedback loop" between miR-24-1 and menin protein, that mimics the second hit of Knudson's hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the "two-hit dogma". The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers.  相似文献   

14.
Agarwal SK  Jothi R 《PloS one》2012,7(5):e37952
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.  相似文献   

15.
Molecular alterations during insulinoma tumorigenesis   总被引:3,自引:0,他引:3  
Insulinomas are the most common functioning endocrine pancreatic tumors (EPTs). They present with clinical symptoms as a consequence of hypoglycemia induced by inappropriate insulin secretion. The etiology of these tumors is poorly understood. Some tumors may harbor MEN1 gene mutations, the susceptibility gene of the multiple endocrine neoplasia type I syndrome, but most cases show wildtype MEN1. Currently, no reliable clinical tests are available to differentiate benign from malignant tumors. Approximately 30% of the tumors are unresectable, and they often show different growth rates, which hampers treatment. Therefore, a better understanding of the molecular processes underlying the development and progression of insulinomas is required to improve diagnosis, prognosis and therapy. Here we summarize the progress that has been made in insulinoma research in the past decade. We describe the clinical detection, classification and treatment of these tumors, and review the multiplicity of molecular and genetic studies that investigated tumor development and progression using either primary tumors, transgenic mouse models or tumor-derived cell lines. The identification of many interactors of the MEN1 gene product menin, as well as recurrent chromosomal abnormalities that pinpoint candidate genes of interest will likely result in a better understanding of the molecular pathways involved in insulinoma tumorigenesis. In addition, these studies will pave the way for the identification of novel targets for therapeutical intervention and more reliable markers for clinical diagnosis and prognosis.  相似文献   

16.
《Endocrine practice》2011,17(4):e92-e96
ObjectiveTo present an Iranian patient with a nonclassic form of multiple endocrine neoplasia type 1 (MEN 1) who presented with ectopic Cushing syndrome (CS) secondary to a corticotropin (ACTH)-producing thymic neuroendocrine tumor (NET), recurrent renal stones, and a giant cell granuloma of the jaw due to primary hyperparathyroidism (PHPT) without involvement of the pituitary or pancreas.MethodsRelevant imaging and hormonal evaluations were performed. The patient was operated on 2 occasions for a thymic NET and on 3 occasions for PHPT. DNA from a peripheral blood sample was extracted for sequencing of the MEN1 gene.ResultHistopathologic evaluation of the thymic tumor removed during the first surgery showed an atypical carcinoid tumor with a Ki-67 labeling index of 5%. Evaluation after the second surgery revealed an invasive carcinoid tumor with a Ki-67 labeling index of 30%.Parathyroid pathology was suggestive of glandular hyperplasia. Menin gene sequencing revealed a novel frameshift mutation c.1642_1648dup in exon 10.ConclusionThis case of MEN 1 is unusual because most thymic NETs in MEN 1 are nonfunctional, and secretion of ACTH or other ectopic hormones rarely occurs. In patients presenting with thymic NETs, the possibility of MEN 1 should be considered, especially in the presence of hyperparathyroidism. This case also demonstrates that the behavior of thymic NETs can change over time from slow-growing tumors to highly invasive neoplasia, and that ectopic ACTH can be produced by these tumors in the context of MEN 1. (Endocr Pract. 2011;17:e92-e96)  相似文献   

17.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome predisposing to tumors of the parathyroid, endocrine pancreas, anterior pituitary, adrenal glands, and diffuse neuroendocrine tissues. The MEN1 gene has been assigned, by linkage analysis and loss of heterozygosity, to chromosome 11q13 and recently has been identified by positional cloning. In this study, a total of 84 families and/or isolated patients with either MEN1 or MEN1-related inherited endocrine tumors were screened for MEN1 germ-line mutations, by heteroduplex and sequence analysis of the MEN1 gene-coding region and untranslated exon 1. Germ-line MEN1 alterations were identified in 47/54 (87%) MEN1 families, in 9/11 (82%) isolated MEN1 patients, and in only 6/19 (31.5%) atypical MEN1-related inherited cases. We characterized 52 distinct mutations in a total of 62 MEN1 germ-line alterations. Thirty-five of the 52 mutations were frameshifts and nonsense mutations predicted to encode for a truncated MEN1 protein. We identified eight missense mutations and five in-frame deletions over the entire coding sequence. Six mutations were observed more than once in familial MEN1. Haplotype analysis in families with identical mutations indicate that these occurrences reflected mainly independent mutational events. No MEN1 germ-line mutations were found in 7/54 (13%) MEN1 families, in 2/11 (18%) isolated MEN1 cases, in 13/19 (68. 5%) MEN1-related cases, and in a kindred with familial isolated hyperparathyroidism. Two hundred twenty gene carriers (167 affected and 53 unaffected) were identified. No evidence of genotype-phenotype correlation was found. Age-related penetrance was estimated to be >95% at age >30 years. Our results add to the diversity of MEN1 germ-line mutations and provide new tools in genetic screening of MEN1 and clinically related cases.  相似文献   

18.
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.  相似文献   

19.
Pheochromocytomas in patients with von Hippel-Lindau (VHL) syndrome and multiple endocrine neoplasia type 2 (MEN 2) differ in the types and amounts of catecholamines produced and the resulting signs and symptoms. We hypothesized the presence of different processes of catecholamine release reflecting differential expression of components of the regulated secretory pathway among the two types of hereditary tumors. Differences in catecholamine secretion from tumors in patients with VHL syndrome (n = 47) and MEN 2 (n = 32) were examined using measurements of catecholamines in tumor tissue, urine, and plasma, the last of which was under baseline conditions in all subjects and in a subgroup of patients who received intravenous glucagon to provoke catecholamine release. Microarray and proteomics analyses, quantitative PCR, and Western blotting were used to assess expression of tumor tissue secretory pathway components. The rate constant for baseline catecholamine secretion was 20-fold higher in VHL than in MEN 2 tumors (0.359 +/- 0.094 vs. 0.018 +/- 0.009 day(-1)), but catecholamine release was responsive only to glucagon in MEN 2 tumors. Compared with tumors from MEN 2 patients, those from VHL patients were characterized by reduced expression of numerous components of the regulated secretory pathway (e.g., SNAP25, syntaxin, rabphilin 3A, annexin A7, calcium-dependent secretion activator). The mutation-dependent differences in expression of secretory pathway components indicate a more mature regulated secretory pathway in MEN 2 than VHL tumors. These data provide a unique mechanistic link to explain how variations in the molecular machinery governing exocytosis may contribute to clinical differences in the secretion of neurotransmitters or hormones and the subsequent presentation of a disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号