首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC‐8). When exposed to excess light energy, vte1 produced more singlet oxygen (1O2) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ‐9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ‐9 can replace tocopherol and PC‐8 in photoprotection. High total PQ‐9 levels were associated with a noticeable decrease in 1O2 production and higher levels of Hydroxyplastoquinone (PQ‐C), a 1O2‐specific PQ‐9 oxidation product. The extra PQ‐9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ‐C was found almost exclusively in the thylakoid membranes. Upon exposure of wild‐type plants to high light, the thylakoid PQ‐9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ‐9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ‐C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ‐9 pool acts as a 1O2 scavenger and is replenished from the extrathylakoid stock.  相似文献   

2.
《Luminescence》2003,18(6):330-333
The pathogenic roles of reactive oxygen species (ROS) have been implicated in ulcerative colitis (UC). The aim of this study was to examine the effects of ecabet sodium on ROS produced by human neutrophils, particularly after being primed by bacterial lipopolysaccharides (LPS). Neutrophils were isolated from six healthy volunteers. Each well of a 96‐well microplate received neutrophil suspension (1.0 × 105 cells) and the plates were incubated at 37°C for 30 min with or without E. coli LPS (f.c. 0.001 ng/µL). Ecabet sodium (f.c. 0–5.0 mg/mL) was added before starting or after finishing the incubation. Neutrophils were stimulated by opsonized zymosan (OZ; 1.0 mg/mL) or calcium ionophore (A21837; 0.3 µmol/L) and luminol‐dependent chemiluminescence response was measured using a Lumi Box H‐1000. Ecabet sodium attenuated ROS production at a concentration of 5.0 mg/mL (p < 0.05) in LPS‐primed neutrophils. However, attenuating effects were not significantly different when ecabet sodium was added before or after the incubation with E. coli LPS. Ecabet sodium may have some attenuating effects on ROS produced by human neutrophils even after neutrophils are primed by bacterial LPS. These results may explain, in part, the therapeutic effects of ecabet sodium for UC. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of potassium cyanide (KCN) pretreatment on the response of cucumber (Cucumis sativus L.) plants to salt, polyethylene glycol (PEG) and cold stress were investigated in the present study. Here, we found that KCN pretreatment improved cucumber seedlings tolerance to stress conditions with maximum efficiency at a concentration of 20 µM. The results showed that pretreatment with 20 µM KCN alleviated stress‐induced oxidative damage in plant cells and clearly induced the activity of alternative oxidase (AOX) and the ethylene production. Furthermore, the structures of thylakoids and mitochondria in the KCN‐pretreated seedlings were less damaged by the stress conditions, which maintained higher total chlorophyll content, photosynthetic rate and photosystem II (PSII) proteins levels than the control. Importantly, the addition of the AOX inhibitor salicylhydroxamic acid (1 mm ; SHAM) decreased plant resistance to environmental stress and even compromised the cyanide (CN)‐enhanced stress tolerance. Therefore, our findings provide a novel role of CN in plant against environmental stress and indicate that the CN‐enhanced AOX might contribute to the reactive oxygen species (ROS) scavenging and the protection of photosystem by maintaining energy charge homoeostasis from chloroplast to mitochondria.  相似文献   

4.
Paraquat (PQ) is a widely used agro-chemical in agriculture and highly toxic to humans. Although the mechanism of PQ poisoning is not clear, it has been well documented that reactive oxygen species (ROS) generation and apoptosis play pivotal roles. Alternatively, chlorogenic acid (CA) is a biologically active dietary polyphenol, playing several therapeutic roles. However, it is not known whether CA has protective effect on PQ-induced apoptosis. Here, we investigated the effect of CA in preventing PQ-induced apoptosis and explored the underlying mechanisms. A549 cells were pretreated with 100 µM CA for 24?h and then exposed to 160 µM PQ for 24?h. We found that CA was effective in preventing PQ-induced apoptotic features, including the release of cytochrome c from the mitochondria to cytoplasm, the cleavages of caspase 3 and caspase 9, and the increases in levels of Bcl-2-associated X protein (Bax) and intracellular calcium ions. CA alleviated ROS production and prevented the reduction of antioxidant capacity in cells exposed to PQ by increasing NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2) and glutathione levels. In addition, CA also attenuated PQ-induced alterations of mitochondrial structure and function (such as the decreases in membrane potential and adenosine triphosphate level), and the impaired autophagic flux was improved by CA. Down-regulation of sirtuin 1 (Sirt1) by short hairpin RNA reversed the protective effects of CA. Thus, CA may be viewed as a potential drug to treat PQ-induced lung epithelial cell apoptosis and other disorders with similar pathologic mechanisms.  相似文献   

5.
Objective: We have previously shown 1α,25‐dihydroxyvitamin D3 [1α,25‐(OH)2D3] to inhibit mitochondrial uncoupling protein 2 (UCP2) expression in adipocytes and that in vivo suppression of calcitriol levels with calcium‐rich diets increases UCP2 expression. Because UCP2 plays a significant role in the clearance of reactive oxygen species (ROS), we studied the effect of calcitriol on ROS production and ROS‐induced adipocyte proliferation. Research Methods and Procedures: ROS production in human and murine adipocytes was stimulated by high glucose (30 mM) or H2O2 (100 nM). Results: Both approaches resulted in increased ROS production by 27% to 100% (p < 0.05) and increased cell proliferation by 15% to 39% (p < 0.03). These effects were augmented by the addition of mitochondrial uncoupling inhibitor guanosine 5′‐diphosphate (GDP; 100 μM) or 1α,25‐(OH)2D3 (10 nM) and attenuated by UCP2 overexpression, suggesting that inhibition of mitochondrial uncoupling suppresses clearance of ROS and increases adipocyte proliferation. The addition of α ± tocopherol (1 μM) inhibited cell proliferation in adipocytes treated with either H2O2 or high glucose, indicating that ROS plays a major role in the regulation of cell proliferation in adipocytes. Moreover, stimulation of ROS with high glucose and H2O2 resulted in a 2‐ to 5‐fold increase in adipocyte intracellular calcium ([Ca2+]i; p < 0.001), and calcium channel antagonism (nifedipine, 10 μM) suppressed ROS induced calcium influx and cell proliferation, indicating that [Ca2+]i may also regulate ROS production and exert a mitogenic effect in adipocytes. Discussion: These data support a role of 1α,25‐(OH)2D3, UCP2, and [Ca2+]i in the regulation of adipocyte ROS production.  相似文献   

6.
Curcumin has anti‐oxidant, anti‐cancer and anti‐carcinogen property. Our laboratory had previously reported that, curcumin treatment induces reactive oxygen species (ROS) generation in HT‐29 cell line, an effect contradictory to its anti‐oxidant property. This study evaluates the role of p53 in curcumin mediated ROS generation and cell death. Curcumin induced ROS was determined by 2’,7’‐dichlorofluorescein and apoptosis by Hoechst33342/PI staining in HT‐29 and HCT‐116 cell lines. ROS generation occurs within 1 hour of 40 µM curcumin treatment and a reduction was observed by third hour in HCT‐116 insinuating p53 involvement. N‐acetyl cysteine (NAC) pre‐treatment effectively quenched ROS and inhibited membrane potential loss in HT‐29, but less effective in HCT‐116. Mitochondrial membrane potential loss is evident with 10 and 40 µM curcumin in HCT‐116 and at 40 µM curcumin in HT‐29. Total p53 protein level increase was observed by 24 hours in HCT‐116 upon NAC pre‐treatment. Our results indicate that curcumin induces ROS mediated cell death in colon adenocarcinoma cell lines and may be mediated via p53.  相似文献   

7.
Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16?h of treatment with 2, 4, 6, and 10?μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16?h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20?μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2?h (10?μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10?μM) was observed after 3?h of incubation, however, ROS production occurs only at 16?h of incubation (10?μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20?μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.  相似文献   

8.
Polyunsaturated aldehydes (PUA) have recently been shown to induce reactive oxygen species (ROS) and possibly reactive nitrogen species (RNS, e.g., peroxynitrite) in the diatom Skeletonema marinoi (S. marinoi), which produces high amounts of PUA. We now are attempting to acquire better understanding of which reactive molecular species are involved in the oxidative response of S. marinoi to PUA. We used flow cytometry, the dye dihydrorhodamine 123 (DHR) as the main indicator of ROS (but which is also known to partially detect RNS), and different scavengers and inhibitors of both nitric oxide (NO) synthesis and superoxide dismutase activity (SOD). Both the scavengers Tempol (for ROS) and uric acid (UA, for peroxynitrite) induced a lower DHR‐derived green fluorescence in S. marinoi cells exposed to the PUA, suggesting that both reactive species were produced. When PUA‐exposed S. marinoi cells were treated with the NO scavenger 2‐4‐carboxyphenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), an opposite response was observed, with an increase in DHR‐derived green fluorescence. A higher DHR‐derived green fluorescence was also observed in the presence of sodium tungstate (ST), an inhibitor of NO production via nitrate reductase. In addition, two different SOD inhibitors, 2‐methoxyestradiol (2ME) and sodium diethyldithiocarbamate trihydrate (DETC), had an effect, with DETC inducing the strongest inhibition after 20 min. These results indicate the involvement of O2? generation and SOD activity in H2O2 formation (with downstream ROS generation dependent from H2O2) in response to PUA exposure. This is relevant as it refines the biological impact of PUA and identifies the specific molecules involved in the response. It is speculated that in PUA‐exposed S. marinoi cells, beyond a certain threshold of PUA, the intracellular antioxidant system is no longer able to cope with the excess of ROS, thus resulting in the observed accumulation of both O2?? and H2O2. This might be particularly relevant for population dynamics at sea, during blooms, when cell lysis increases and PUA are released. It can be envisioned that in the final stages of blooms, higher local PUA concentrations accumulate, which in turn induces intracellular ROS generation that ultimately leads to cell death and bloom decay.  相似文献   

9.
Cadmium is a toxic metal that produces disturbances in plant antioxidant defences giving rise to oxidative stress. The effect of this metal on H2O2 and O2·? production was studied in leaves from pea plants growth for 2 weeks with 50 µm Cd, by histochemistry with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT), respectively. The subcellular localization of these reactive oxygen species (ROS) was studied by cytochemistry with CeCl3 and Mn/DAB staining for H2O2 and O2·?, respectively, followed by electron microscopy observation. In leaves from pea plants grown with 50 µm CdCl2 a rise of six times in the H2O2 content took place in comparison with control plants, and the accumulation of H2O2 was observed mainly in the plasma membrane of transfer, mesophyll and epidermal cells, as well as in the tonoplast of bundle sheath cells. In mesophyll cells a small accumulation of H2O2 was observed in mitochondria and peroxisomes. Experiments with inhibitors suggested that the main source of H2O2 could be a NADPH oxidase. The subcellular localization of O2·? production was demonstrated in the tonoplast of bundle sheath cells, and plasma membrane from mesophyll cells. The Cd‐induced production of the ROS, H2O2 and O2·?, could be attributed to the phytotoxic effect of Cd, but lower levels of ROS could function as signal molecules in the induction of defence genes against Cd toxicity. Treatment of leaves from Cd‐grown plants with different effectors and inhibitors showed that ROS production was regulated by different processes involving protein phosphatases, Ca2+ channels, and cGMP.  相似文献   

10.
Oxidative stress within chloroplasts is originated due to light‐dependent O2 reduction. This may be exacerbated by bipyridinium herbicides, which act at photosystem I as artificial electron acceptors. Their oxidation produces a superoxide anion that further dismutates to H2O2 and then, by the Fenton reaction, H2O2 may be reduced to the hydroxyl radical (OH?). Reactive oxygen species (ROS), when produced in high amounts, provoke severe damage to the plant cell. Herein it is reported that two nitric oxide (NO) donors, sodium nitroprusside (100 µm ) and S‐nitroso‐N‐acetylpenicillamine (200 µm ), greatly reduced lipid peroxidation and the protein loss caused by the application of a high dose of the bipyridinium herbicide diquat to potato leaf pieces or isolated chloroplasts. Nitric oxide donors also protected the RNA against oxidative damage. Photo‐oxidative toxicity was correlated with an increase in photosynthetic electron transport and ROS production, but the rate of electron transport was restored and the ROS free amount was markedly reduced in the presence of NO. The specific activity of superoxide dismutase was not affected by diquat or NO donors, whereas just a small increase in catalase activity was observed after 24 h of treatment. These results provide strong evidence that NO is a potent antioxidant in plants and that its action may, at least in part, be explained by its ability to directly scavenge ROS.  相似文献   

11.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

12.
13.
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.  相似文献   

14.
15.
BACKGROUND : Valproic acid (VPA) is a frequently used antiepileptic agent and known teratogen. Previous research suggests that inhibition of histone deacetylases (HDACs) may play a role in VPA‐induced teratogenicity. We have also shown that VPA exposure leads to both an increase in reactive oxygen species (ROS) production and increased frequency of homologous recombination (HR). METHODS : In the present study, we evaluated the role of HDAC inhibition in VPA‐initiated HR to determine if HDAC inhibition could alter repair activity and/or cause DNA double‐strand breaks (DSBs), which would then initiate repair. Histone acetylation status was assessed to determine if VPA exposure led to HDAC inhibition in CHO 33 cells. RESULTS : Our results demonstrate that VPA (5 mM) exposure leads to increased acetylated histone H3 and H4 protein levels after 10 to 24 hr. Secondly, in our recombination assay where an artificial DNA DSB was induced in CHO 33 cells to assess repair activity, VPA exposure did not affect the repair activity of VPA‐initiated HR. Subsequently, to determine if VPA could increase susceptibility to DNA DSBs, the number of γ‐H2AX foci was assessed using immunocytochemistry and results revealed an increase in γ‐H2AX foci after 10‐ to 24‐hr exposure to VPA. CONCLUSIONS : Although we demonstrated the protective effect of polyethylene glycol‐catalase against VPA‐induced HR and the generation of intracellular ROS within 24 hr, we did not observed an increase in DNA oxidation. These studies suggest that HDAC inhibition and ROS signaling may play roles in DNA maintenance and cell‐cycle arrest in initiating DNA damage and repair. Birth Defects Res (Part B) 89:124–132, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2′7′-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the respiratory burst, was also used. Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.  相似文献   

17.
The herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4‐D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4‐D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4‐D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3‐1, ctr 1‐1, etr 1‐1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4‐D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4‐D.  相似文献   

18.
《Luminescence》2004,19(1):1-7
Indole‐2 and 3‐carboxamides (IDs) are proposed to be selective cyclooxygenase inhibitors. Since cyclooxygenase‐1 may be involved in reactive oxygen species (ROS) production, we hypothesize that these indole derivatives have antioxidative properties. We have employed chemiluminescence (CL) and electron spin resonance (ESR) spin trapping to examine this hypothesis. We report here the results of a study of reactivity of 10 selected indole derivatives towards ROS. The following generators of ROS were applied: potassium superoxide (KO2) as a source of superoxide radicals (O2·?), the Fenton reaction (Co‐EDTA/H2O2) for hydroxyl radicals (HO·), and a mixture of alkaline aqueous H2O2 and acetonitrile for singlet oxygen (1O2). Hydroxyl radicals were detected as 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) spin adduct, whereas 2,2,6,6‐tetramethyl‐piperidine (TEMP) was used as a detector of 1O2. Using the Fenton reaction, 0.5 mmol/L IDs were found to inhibit DMPO‐?H radical formation in the range 7–37%. Furthermore the tested compounds containing the thiazolyl group also inhibited the 1O2‐dependent TEMPO radical, generated in the acetonitrile + H2O2 system. About 20% inhibition was obtained in the presence of 0.5 mmol/L IDs. 1 mmol/L IDs caused an approximately 13–70% decrease in the CL sum from the O2·? generating system (1 mmol/L). The aim of this paper is to evaluate these indole derivatives as antioxidants and their abilities to scavenge ROS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

20.
Reactive oxygen species (ROS) imbalance is a stressful condition for plant cells accompanied by dramatic changes in tubulin cytoskeleton. Here, evidence is provided that alterations in ROS levels directly interfere with the phosphorylation state of a p38‐like MAPK in the angiosperms Triticum turgidum and Arabidopsis thaliana. Both oxidative stress generators and chemicals inducing ROS scavenging or decreasing ROS production resulted in the accumulation of a phospho‐p46 protein similar to p38‐MAPK. Importantly, the rhd2 A. thaliana mutants exhibited a remarkable increase in levels of phospho‐p46. The presence of the p38‐MAPK inhibitor SB203580 attenuated the response to ROS disturbance, prevented microtubule disappearance and resulted in a dramatic decrease in the number of atypical tubulin polymers. Moreover, in roots treated simultaneously with substances inducing ROS overproduction and others resulting in low ROS levels, phospho‐p46 levels and the organization of tubulin cytoskeleton were similar to controls. Collectively, our experimental data suggest, for the first time in plants, that p46 functions as a putative sensor of redox state, the activation of which initiates downstream signalling events leading to microtubule disruption and subsequent assembly of atypical tubulin polymers. Thus, p46 seems to participate in perception of ROS homeostasis disturbance as well as in cellular responses to redox imbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号