首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paul JH  Cooksey KE 《Plant physiology》1981,68(6):1364-1368
The ammonium assimilatory enzymes glutamine synthetase (EC 6.3.1.2) and glutamate dehydrogenase (EC 1.4.1.3) were investigated for a possible role in the regulation of asparaginase (EC 3.5.1.1) in a Chlamydomonas species isolated from a marine environment. Cells grown under nitrogen limitation (0.1 millimolar NH(4) (+), NO(3) (-), or l-asparagine) possessed 6 times the asparaginase activity and approximately one-half the protein of cells grown at high nitrogen levels (1.5 to 2.5 millimolar). Biosynthetic glutamine synthetase activity was 1.5 to 1.8 times greater in nitrogen-limited cells than cells grown at high levels of the three nitrogen sources.Conversely, glutamate dehydrogenase (both NADH- and NADPH-dependent activities) was greatest in cells grown at high levels of asparagine or ammonium, while nitrate-grown cells possessed little activity at all concentrations employed. For all three nitrogen sources, glutamate dehydrogenase activity was correlated to the residual ammonium concentration of the media after growth (r = 0.88 and 0.94 for NADH- and NADPH-dependent activities, respectively).These results suggest that glutamate dehydrogenase is regulated in response to ambient ammonium levels via a mechanism distinct from asparaginase or glutamine synthetase. Glutamine synthetase and asparaginase, apparently repressed by high levels of all three nitrogen sources, are perhaps regulated by a common mechanism responding to intracellular nitrogen depletion, as evidenced by low cellular protein content.  相似文献   

2.
In Pseudomonas aeruginosa the formation of urease, histidase and some other enzymes involved in nitrogen assimilation is repressed by ammonia in the growth medium. The key metabolite in this process appears to be glutamine or a product derived from it, since ammonia and glutamate did not repress urease and histidase synthesis in a mutant lacking glutamine synthetase activity when growth was limited for glutamine. The synthesis of these enzymes was repressed in cells growing in the presence of excess glutamine. High levels of glutamine were also required for the derepression of NADP-dependent glutamate dehydrogenase formation in the glutamine synthetase-negative mutant.  相似文献   

3.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

4.
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.  相似文献   

5.
When the fungus Gibberella fujikuroi ATCC 12616 was grown in fermentor cultures, both intracellular kaurene biosynthetic activities and extracellular GA3 accumulation reached high levels when exogenous nitrogen was depleted in the culture. Similar patterns were exhibited by several nonrelated enzymatic activities, such as formamidase and urease, suggesting that all are subject to nitrogen regulation. The behavior of the enzymes involved in nitrogen assimilation (glutamine synthetase, glutamate dehydrogenase, and glutamate synthase) during fungal growth in different nitrogen sources suggests that glutamine is the final product of nitrogen assimilation in G. fujikuroi. When ammonium or glutamine was added to hormone-producing cultures, extracellular GA3 did not accumulate. However, when the conversion of ammonium into glutamine was inhibited by L-methionine-DL-sulfoximine, only glutamine maintained this effect. These results suggest that glutamine may well be the metabolite effector in nitrogen repression of GA3 synthesis, as well as in other nonrelated enzymatic activities in G. fujikuroi.  相似文献   

6.
Abstract. Under stress conditions (darkness, nitrogen starvation, high ammonium concentrations, glutamine synthetase and glutamate synthase inhibition) glutamate dehydrogenase animating activity levels of Chlamydomonas cells varied inversely to those of glutamine synthetase. Nitrogen and carbon sources also influenced glutamate dehydrogenase levels in Chlamydomonas , the highest values being found in cells cultured mixotrophically with ammonium, under which conditions glutamate dehydrogenase and glutamine synthetase levels were likewise inversely related. These facts, together with the analysis of internal fluctuations of ammonium, 2-oxoglutarate, and the amino acid pool as well as the variations of certain enzymes involved in carbon metabolism indicate that glutamate dehydrogenase animating activity is adaptative, being involved in the maintenance of intracellular levels of L-glutamate when they cannot be maintained by the GS-GOGAT cycle, and probably more connected with carbon than nitrogen metabolism.  相似文献   

7.
The two glutamine synthetases of Rhizobium sp. 32H1 appear to be structurally and functionally distinct. Glutamine synthetase I was reversibly adenylylated, and its synthesis was repressed only twofold by ammonium. When in the unadenylylated configuration, it was the enzyme which allowed the organism to grow, albeit marginally, on ammonium as a nitrogen source. There is no evidence to suggest that the second enzyme, glutamine synthetase II, is regulated by adenylylation. However, this enzyme was repressed at least 50-fold by even low amounts of ammonium. Glutamine synthetase II does not seem to function in ammonium assimilation but rather in purine biosynthesis.  相似文献   

8.
Bacillus fastidiosus was cultivated in batch and continuous culture on various carbon and nitrogen sources. The enzymes involved in allantoin degradation (allantoinase, urease, carboligase) of B. fastidiosus were hardly affected by either carbon or nitrogen source. In contrast, the enzymes involved in glycerol utilization (glycerol kinase, glycerol 3-phosphate dehydrogenase) were induced during growth on glycerol, but were not affected by the amount of allantoin present.  相似文献   

9.
Specific activities of arginase and ornithine aminotransferase, inducible enzymes of arginine catabolism in Bacillus subtilis 168, were examined in cells grown with various carbon and nitrogen sources. Levels of these enzymes were similar in arginine-induced cultures whether glucose or citrate was the carbon source (in contrast to histidase), suggesting that carbon source catabolite repression has only limited effect. In media with combinations of nitrogen sources, glutamine strongly repressed induction of these enzymes by proline or arginine. Ammonium, however, only repressed induction by proline and had no effect on induction by arginine. These effects correlate with generation times in media containing these substances as sole nitrogen sources: growth rates decreased in the order glutamine-arginine-ammonium-proline. Similar phenomena were observed when glutamine or ammonium were added to arginine- or proline-grown cultures, or when arginine or proline were added to glutamine- or ammonium-grown cultures. In the latter cases, an additional feature was apparent, namely a surprisingly long transition between steady-state enzyme levels. The results are compared with those for other bacteria and for eucaryotic microorganisms.  相似文献   

10.
以普通小麦(Triticum aestivumL.)为材料,研究了NaHSO3对不同盐度胁迫下小麦幼苗氮素同化酶和脯氨酸含量的调节。结果表明,盐胁迫降低了叶片中硝酸还原酸(NR)的活性,加入NaHSO3之后,NR活性表现出进一步的降低。谷氨酰胺合成酶(GS)在低浓度盐胁迫下活性增加,在高浓度盐胁迫下活性降低;NaHSO3加入时,即便在低盐浓度下GS活性也降低。依赖于NADH的谷氨酸脱氢酶(NADH-GDH)和依赖于NADP的异柠檬酸脱氢酶(NADP-ICDH)的变化趋势一致,在盐胁迫下它们的活性都明显增加;NaHSO3加入促进了它们活性的进一步增加,尤其对NADH-GDH活性的促进更为明显。游离脯氨酸在高浓度盐胁迫下大量积累,在低浓度盐胁迫下含量增加不明显;NaHSO3促进了盐胁迫下脯氨酸的积累,提示了NaHSO3促进了盐胁迫下小麦幼苗碳氮营养元素的贮存。  相似文献   

11.
We have isolated mutant strains (nit) of Salmonella typhimurium that are defective in nitrogen metabolism. They have a reduced ability to use a variety of compounds including glutamate, proline, arginine, N-acetyl-glucosamine, alanine, and adenosine as sole nitrogen source. In addition, although they grow normally on high concentrations of ammonium chloride (greater than 1 mM) as nitrogen source, they grow substantially more slowly than wild type at low concentrations (less than 1 mM). We postulated that the inability of these strains to utilize low concentrations of ammonium chloride accounts for their poor growth on other nitrogen sources. The specific biochemical lesion in strains with a nit mutation is not known; however, mutant strains have no detectable alteration in the activities of glutamine synthetase, glutamate synthetase, or glutamate dehydrogenase, the enzymes known to be involved in assimilation of ammonia. A nit mutation is suppressed by second-site mutations in the structural gene for glutamine synthetase (glnA) that decrease glutamine synthetase activity.  相似文献   

12.
Pregnant rats of 19th and 21st days were given an acute nitrogen overload produced by an infusion of either 0.2 M ammonium acetate or 0.2 M glutamine. Metabolic adaptations to nitrogen excess were studied measuring--in fetomaternal unit--non-protein nitrogen content and the activities of enzymes related with ammonia metabolism. Maternal and fetal plasma urea levels were increased by ammonium acetate treatment. Glutamine overload increased more the amino acid content in the mothers than in conceptus. As response to ammonium acetate treatment, glutamate dehydrogenase activity in liver was more sensitive in pregnant than in nonpregnant rats, suggesting more nitrogen incorporation into amino acids in pregnancy. Regarding glutamine synthetase activity, both treatments had an opposite effect except in kidney. The adenylate deaminase activity of pregnant rats was inhibited similarly to nonpregnant rats by nitrogen overloads, but stronger after glutamine infusion. Placenta and fetal metabolism were adjusted, as the dams, to lack of ammonia production by nitrogen overloads and to glutamine synthesis by ammonium acetate infusion.  相似文献   

13.
Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate.  相似文献   

14.
Glutamine synthetase in Bacillus subtilis 168 was repressed to a greater extent by L-glutamine or L-arginine than by ammonia when each was used as sole nitrogen source. It was derepressed when either L-glutamate or nitrate was used as nitrogen source. Glutamate synthase was repressed by L-glutamate or L-arginine and, to a lesser extent, by L-glutamine but was derepressed during growth with ammonia or nitrate. Glutamine synthetase activity was unaltered during the onset of sporulation. Glutamate synthase activity, however, underwent a small and apparently transient increase in bacteria induced to sporulate by nitrogen limitation.  相似文献   

15.
Summary Glutamine synthetase I activity ofStreptomyces coelicolor was strongly repressed by ammonia and was induced 56.8 fold in a nitrogen-free medium. Glutamine synthetase II activity was not induced even by a long-term nitrogen starvation. Therefore, glutamine synthetase I is the only active enzyme ofStreptomyces coelicolor.  相似文献   

16.
Azospirillum lipoferum strain D-2 possesses the following enzymes for the assimilation of N2 and NH 4 + : nitrogenase, glutamine synthetase, NADPH-dependent glutamate synthase, NADH-/NADPH-dependent glutamate dehydrogenase, and NADH-dependent alanine dehydrogenase. Nitrogenase and glutamine synthetase are repressed, whereas glutamate dehydrogenase and alanine dehydrogenase are induced by NH 4 + . Glutamine synthetase activity is modulated by both repression and depression and also by adenylylation.  相似文献   

17.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

18.
Regulation of Klebsiella pneumoniae hut operons by oxygen.   总被引:4,自引:3,他引:1       下载免费PDF全文
We investigated the regulation of genes concerned with nitrogen metabolism by oxygen in the facultative anaerobe Klebsiella pneumoniae. We found oxygen to be required for the expression of the hut operons; the effect of O2 on the glutamine synthetase and urease was less pronounced than on the hut operons. Glutamine synthetase was transiently repressed during the transition from an aerobic to an anaerobic environment. Regulation of hut by O2 suppressed the effect of nitrogen limitation on the expression of these genes.  相似文献   

19.
To determine whether Salmonella typhimurium has a nitrogen control response, we have examined the regulation of nitrogen utilization in two mutants with fivefold and threefold elevations in their glutamine synthetase activities. The mutants do not require glutamine for growth on glucose--ammonia medium but do have altered growth on other nitrogen sources. They grow better than an isogenic control on media containing arginine or asparate, but more slowly with proline or alanine as nitrogen sources. This unusual growth pattern is not due to altered regulation of the ammonia assimilatory enzymes, glutamate dehydrogenase and glutamate synthase, or to changes in the enzymes for aspartate degradation. However, transport for several amino acids may be affected. Measurement of amino acid uptake show that the mutants with high glutamine synthetase levels have increased rates for glutamine, arginine, aspartate, and lysine, but a decreased rate for proline. The relationship between glutamine synthetase levels and uptake was examined in two mutants with reduced, rather than increased, glutamine synthetase production. The uptake rates for glutamine and lysine were lower in these two glutamine auxotrophs than in the Gln+ controls. These results show a correlation between the glutamine synthetase levels and the uptake rates for several amino acids. In addition, the pleiotropic growth of the mutants with elevated glutamine synthetase activities suggests that a nitrogen control response exists for S. typhimurium and that it can be altered by mutations affecting glutamine synthetase regulation.  相似文献   

20.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号