首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Six major basic cytosolic glutathione transferases from rat liver catalyzed the conversion of leukotriene A4 methyl ester to the corresponding leukotriene C4 monomethyl ester. Glutathione transferase 4-4, the most active among these enzymes, had a Vmax of 615 nmol X min-1 X mg protein-1 at 30 degrees C in the presence of 5 mM glutathione. It was followed in efficiency by transferase 3-4 which had a Vmax of 160 nmol X min-1 X mg-1 under the same conditions. Transferases 1-1, 1-2, 2-2 and 3-3 had at least 30 times lower Vmax values than transferase 4-4.  相似文献   

2.
Cytosols of rat and guinea pig liver and of human placenta were screened for their capacity to catalyze the conversion of racemic leukotriene A4 into 5S, 12R-dihydroxy-(Z,E,E,Z)-6,8,10,14-eicosatetraenoic acid (leukotriene B4). The epoxide hydrolase activities showed some specificity for the 5S,6S-oxido-(E,E,Z,Z)-7,9,11,14-eicosatetraenoic acid (LTA4) and produced mixtures of leukotriene B4 and its enantiomer containing up to 78-87% of leukotriene B4.  相似文献   

3.
The ability of three distinct types of human cytosolic glutathione transferase to catalyze the formation of leukotriene C4 from glutathione and leukotriene A4 has been demonstrated. The near-neutral transferase (mu) was the most efficient enzyme with Vmax= 180 nmol X min-1 X mg-1 and Km= 160 microM. The Vmax and Km values for the basic (alpha-epsilon) and the acidic (pi) transferases were 66 and 24 nmol X min-1 X mg-1 and 130 and 190 microM, respectively. The synthetic methyl ester derivative of leukotriene A4 was somewhat more active as a substrate for all the three forms of the enzyme.  相似文献   

4.
The transformation of leukotriene A4 into dihydroxyeicosatetraenoic acids and sulfidopeptide leukotrienes was determined in homogenates of rat tissues supplied with glutathione and albumin. The highest production of leukotriene B4 was found in spleen, lung and small intestine, while leukotriene C4 dominated in liver and lung. 5(S),6(R)-Dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid (5,6-DHETE) was formed in all tissues, most prominently in kidney, heart and brain. We also found another isomer of 5,6-dihydroxyeicosatetraenoic acid produced in the kidney. This compound was derived from 5,6-DHETE by isomerization, probably of the 11-cis double bond to 11-trans, and the process appeared to be catalyzed by a membrane-bound factor.  相似文献   

5.
Alkaline hydrolysis of leukotriene A4 methyl ester to leukotriene A4 was studied in either methanol or acetone. Hydrolysis in acetone yielded larger amounts of leukotriene A4 than similar hydrolysis in methanol. The maximum amount was obtained 60 minutes after the beginning of the hydrolysis. Leukotriene A4, as well as leukotriene B4 methoxy isomers were obtained from hydrolysis of leukotriene A4 methyl ester in methanol. It was found that initial leukotriene A4 methyl ester concentration affected the amount of LTA4 produced during the hydrolysis. The maximum concentration of leukotriene A4 was obtained by hydrolyzing solutions of 0.25 mg/ml leukotriene methyl ester in acetone. Spontaneous degradation of leukotriene A4 occurred when it was diluted with tris buffer. Addition of bovine serum albumin to the tris buffer significantly prolonged the half life of leukotriene A4.  相似文献   

6.
Conversion of leukotrienes A4 to C4 in cell-free systems   总被引:2,自引:0,他引:2  
A procedure for assaying leukotriene C4 synthase activity in cell-free extracts has been presented. Leukotriene A4 methyl ester was as active a substrate as leukotriene A4 (Na salt) for the synthesis. The methyl ester is the substrate of choice, because (1) it is more stable than the sodium salt, (2) it is not a substrate of epoxide hydrolase for leukotriene B4 synthesis, and (3) it gives a lower blank than an equimolar concentration of leukotriene A4. The enzyme activity in rat liver, guinea pig and human lungs, and human nasal polyp was chiefly membrane-bound, although the cytosol contained some activity.  相似文献   

7.
Treatment of leukotriene A4 (LTA4) methyl ester with sodium hydroxide in aqueous methanol at 4 degrees C afforded LTA4, the presence of which was inferred from the UV spectrum of the compound, its rate of reaction with water, and the identity of the hydration products obtained. The half-life of LTA4 in water (pH 7.4, room temperature) was increased from 14 to 500 s by 1 mg/ml of bovine serum albumin. This stabilized (chiral) LTA4 was converted to LTB4 by an epoxide hydrolase activity in the 100,000 x g supernatant fraction from sonified rat basophilic leukemia cells. Neither the ester of LTA4 nor the biologically incorrect enantiomer of LTA4 was metabolized to LTB4 under these conditions.  相似文献   

8.
The strategy of acyclic eicosanoid synthesis via polyacetylenic intermediates is examplified by the synthesis of the racemic leukotriene A4 methyl ester. Leukotriene synthons, namely, trideca-1,4,7-triyne and methyl 6-formyl-5,6-trans-epoxyhexanoate, were synthesised using propargylic alcohol (thrice) and 1-heptyne as starting materials. In the course of the synthesis all new carbon-carbon bonds were created through acetylenide anion condensations and (Z)-double bonds are introduced by triple bond hydrogenations. The strategy provides a straightforward and stereospecific synthetic pathway.  相似文献   

9.
Leukotriene A4 hydrolase from perfused guinea-pig liver was purified 1200-fold to near homogeneity with a yield of about 20%. Apparent values of Km and Vmax at 37 degrees C (27 microM and 68 mumol x mg-1 x min-1), turnover number, and activation energy for the conversion of leukotriene A4 into leukotriene B4 were estimated from kinetic data obtained at -10 degrees C, 0 degree C and +10 degrees C (Arrhenius plots). Physical properties including Mr (67,000-71,000), pH optimum, isoelectric point and Stokes' radius were determined. The amino acid composition and N-terminal amino acid sequence were established after carboxymethylation of the enzyme. Unlike liver cytosolic epoxide hydrolase, the purified enzyme did not catalyze the conversion of leukotriene A4 into (5S,6R)-5,6-dihydroxy-7,9-trans-11,14-cis-icosatetraenoic acid.  相似文献   

10.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

11.
[3H]Leukotriene A4 was incubated with various subcellular fractions of rat liver homogenates. After solvent extraction and purification on C18 Sep-Pak cartridges, tritiated products migrating on reversed-phase HPLC with authentic unlabelled leukotriene C4, D4 and B4 were observed. The identity of leukotriene C4 was confirmed through enzymatic conversion into D4 by gamma-glutamyl transpeptidase as well as by bioassay on the rat stomach fundus after HPLC purification. The contractile response to the extracted material was blocked by the SRS antagonist, FPL 55712. Leukotriene B4 synthesis was located in the 100 000 X g supernatant, while C4 synthesis was present in the corresponding pellet. Leukotriene C4 formation was enhanced when reduced glutathione was supplemented in the incubation medium. These results demonstrate the presence in rat liver of various enzymatic steps in leukotriene A4 catabolism.  相似文献   

12.
A number of esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3) of microbial and mammalian origin were screened for the ability to resolve racemic 4-amino-cyclopentanecarboxylic acid methyl ester derivatives as potential intermediates in the production of carbocyclic nucleosides. Surprisingly, functionalization of the remote amino group had a profound effect on both the rate and enantioselectivity of hydrolysis of the methyl ester. 4-(Benzoylamino)-2-cyclopentenecarboxylic acid, methyl ester (V) with pig liver esterase gave the highest enantioselectivity. The residual ester, which was of the correct absolute stereochemistry [(+) 1S, 4R] for carbocyclic nucleoside synthesis, could be obtained in high optical purity. Optimization of pH, solvent type, and concentration improved the enantioselectivity of the process by a further twofold.  相似文献   

13.
In the hydrolysis of racemic 3-(4-methoxyphenyl)glycidic acid methyl ester by immobilized Mucor miehel lipase in supercritical CO2 the initial hydrolysis rate of the (2S,3R)-form was faster than the rate of the (2R,3S) -form. The stereoisomeric excess of the (2R,3S)-form reached 87 % at 53 % total conversion level. The water content of the reaction mixture and the initial concentration of the 3-(4-methoxyphenyl) glycidic acid methyl ester had no effect on isomeric purity. The reaction rate in supercritical CO2 was considerably faster than in toluene/water -mixture.  相似文献   

14.
A soluble high affinity binding unit for leukotriene (LT) C4 in the high speed supernatant of rat liver homogenate was characterized at 4 degrees C as having a single type of saturable affinity site with a dissociation constant of 0.77 +/- 0.27 nM (mean +/- S.E., n = 5). The binding activity was identified as the liver cytosolic subunit 1 (Ya) of glutathione S-transferase, commonly known as ligandin, by co-purification with the catalytic activity during DEAE-cellulose column chromatography and 11,12,14,15-tetrahydro-LTC4 (LTC2)-affinity gel column chromatography; resolution into two major bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Mr 23,000 and 25,000, of which only the smaller protein was labeled with [3H]LTC4 coupled via a photoaffinity cross-linking reagent; and immunodiffusion analysis with rabbit antiserum to glutathione S-transferase which showed a line of identity between the purified LTC4-binding protein and rat liver glutathione S-transferase. The affinity-purified binding protein bound 800 pmol of [3H] LTC4/mg of protein and possessed 12 mumol/min/mg of glutathione transferase activity as assayed with 1-chloro-2,4-dinitrobenzene as substrate. The enzyme activity of the cytosolic LTC4-binding protein was inhibited by submicromolar quantities of unlabeled LTC4, and the binding activity for [3H]LTC4 was blocked by the ligandin substrates, hematin and bilirubin. The high affinity interaction between LTC4 and glutathione S-transferase suggests that glutathione S-transferase may have a role in LTC4 disposition and that previous studies of LTC4 binding to putative receptors in nonresponsive tissues may require redefinition of the binding unit.  相似文献   

15.
While metabolism of benz[a]anthracene by rat liver microsomes produced a (+)5R,6R-dihydrodiol as the major enantiomer, metabolism of 12-methylbenz[a]anthracene under similar conditions gave a (?)5S,6S-dihydrodiol as the major enantiomer. This is the first example indicating that the methyl substituent of a polycyclic aromatic hydrocarbon can drastically alter the stereoselective preference of the microsomal drug-metabolizing enzyme systems toward a substrate molecule in the formation of a dihydrodiol metabolite at an unsubstituted aromatic double bond.  相似文献   

16.
Leukotriene C4 binding to rat lung membranes   总被引:8,自引:0,他引:8  
A high affinity binding site for leukotriene C4 (LTC4), one component of slow reacting substance of anaphylaxis, has been identified in a membrane preparation from rat lung. As measured by a filtration technique, [3H]LTC4 binding was saturable, specific, reversible, and heat-sensitive. In the presence of 20 mM CaCl2, the dissociation constant (KD) was 41 +/- 9 nM and the maximum number of binding sites (Bmax) was 31 +/- 10 pmol/mg of protein. Specificity was demonstrated by competition studies in which LTC4 had a Ki of 40 nM against specifically bound [3H]LTC4, whereas leukotriene D4 (LTD4) had a Ki of 4 microM. The stereoisomers (5R, 6R) LTC4, (5S, 6S) LTC4, and (5R, 6S) LTC4 had Ki values 3-, 15-, and 25-fold higher than that of natural (5S, 6R) LTC4. Leukotrienes E4 and B4, several prostaglandins and fatty acids, glutathione, and platelet activating factor were even less effective with Ki values above 10 microM. A slow reacting substance of anaphylaxis antagonist, FPL 55712, which, in some systems, distinguishes LTC4- from LTD4-induced contractions, was a weak competitor with a Ki of 16 microM. Serine-borate complex which inhibits gamma-glutamyl transpeptidase, an enzyme responsible for LTC4 metabolism, did not alter binding. In addition, 100 microM FPL 55712 did not reduce metabolism. These observations suggest that the binding observed for LTC4 may represent association with a physiological receptor for this molecule which has a relatively low affinity for LTD4.  相似文献   

17.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

18.
Enzymic activities catalyzing allylic epoxide, leukotriene A4, to leukotriene C4 by conjugation with glutathione were present mainly in microsomal fractions of spleens and lungs of guinea pigs and rats. Leukotriene C4 (LTC4) synthase was solubilized from the microsomes of guinea-pig lung by the new procedures of a combination of 3-[3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS), digitonin and KCl. The enzyme was partially purified by two steps of column chromatography which resulted in a complete resolution of the enzyme from glutathione S-transferases (EC 2.5.1.18). The partially purified LTC4 synthase showed a Vmax value of 40 nmol/min per mg, and the apparent Km values for LTA4 and glutathione were 36 microM and 1.6 mM, respectively. The enzyme was unstable, and half of the activity was lost by incubation at 37 degrees C for 3 min. Glutathione at 10 mM completely protected the enzyme against this inactivation, while other sulfhydryl-group-reducing reagents were ineffective. The partially purified enzyme revealed a high specificity towards 5,6-epoxide leukotrienes (LTA4 and its methyl ester), while rat cytosolic glutathione S-transferases catalyzed conjugation of glutathione to various positional isomers of epoxide leukotrienes.  相似文献   

19.
The ability of the major neutrophil-derived lipoxygenase metabolites of arachidonic acid to increase the rate of 45Ca influx in rabbit neutrophils was examined. The results obtained demonstrate that (5S),(12R)-dihydroxy-6,8,11,14-(cis,trans,trans,cis)-eicosatetraenoic acid (leukotriene B4) is the most active of the arachidonic acid metabolites. The activity of leukotriene B4 is highly stereospecific in that its three nonenzymatically derived isomers are essentially inactive. The omega-hydroxylation of leukotriene B4 results in a compound that is nearly as active as leukotriene B4 as far as its ability to stimulate calcium influx and neutrophil aggregation while being a much weaker secretagogue. The further conversion of leukotriene B4 into a dicarboxylic acid removes all detectable biological activity. 5,6-Oxido-7,9,11,14-eicosatetraenoic acid (leukotriene A4) methyl ester was also found to increase the rate of calcium influx, while the degradation products of native leukotriene A4 were essentially inactive. These results demonstrate that a close correlation exists between the ability of the various lipoxygenase products to alter calcium homeostasis in rabbit neutrophils and their biological activities.  相似文献   

20.
Cytochrome P-450 (P-450)-catalyzed oxidation of 2,6-dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid diethyl ester gives rise to 2,6-dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid monoethyl ester and to 2-hydroxymethyl-6-methyl-4-phenyl-3,5-pyridinedicarboxylic acid diethyl ester, identified in this work. A pyridine hydroxymethyl diester of the sort of the latter compound is novel; under acidic or dehydrating conditions the diester is readily converted to a cyclic lactone (2-hydroxymethyl-6-methyl-4-phenyl-3,5-pyridinedicarboxylic acid 5-ethyl ester lactone). 2,6-Dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid monoethyl ester was not hydroxylated to form this hydroxymethyl compound or lactone, but 1,4-dihydro-2-hydroxymethyl-4-phenyl-6-methyl-3,5-pyridinedicarboxyli c acid diethyl ester was enzymatically oxidized to give both products. The rates of oxidative carboxylic ester cleavage and methyl hydroxylation varied among individual forms of P-450 tested. Experiments with 2H and 3H labels were used to estimate an intrinsic kinetic deuterium isotope effect of 15 for ethyl ester cleavage by rat liver P-450PB-B in a reconstituted system. Rat liver microsomal systems showed kinetic deuterium and tritium isotope effects of 8 and 11, respectively, and this deuterium isotope effect was not attenuated in either intra- or intermolecular competitive experiments. When deuterium was present in the ethyl (ester) groups, increases in the rate of 2-methyl hydroxylation were observed in rat liver microsomes and with purified P-450 beta NF-B (but not with P-450PB-B). Deuteration of the methyl groups gave rise to kinetic isotope effects of 7-11, but no increases were seen in the rates of ester cleavage. These studies and those on rates of substrate disappearance indicate that isotopically sensitive branching (metabolic switching) observed in these systems is not necessarily bidirectional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号