首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wi SG  Chung BY  Lee YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(10):5788-5793
The objective of this study was to find a pretreatment process that enhances enzymatic conversion of biomass to sugars. Rapeseed straw was pretreated by two processes: a wet process involving wet milling plus a popping treatment, and a dry process involving popping plus dry milling. The effects of the pretreatments were studied both in terms of structural and compositional changes and change in susceptibility to enzymatic hydrolysis. After application of the wet and dry processes, the amounts of cellulose and xylose in the straw were 37-38% and 14-15%, respectively, compared to 31% and 12% in untreated counterparts. In enzymatic hydrolysis performance, the wet process presented the best glucose yield, with a 93.1% conversion, while the dry process yielded 69.6%, and the un-pretreated process yielded <20%. Electron microscopic studies of the straw also showed a relative increase in susceptibility to enzymatic hydrolysis with pretreatment.  相似文献   

2.
Rice straw has recently attracted interest in Japan as a potential source of raw material for ethanol production. Wet disk milling, a continuous pretreatment to enhance the enzymatic digestibility of rice straw, was compared with conventional ball milling and hot-compressed water treatment. Pretreated rice straw was evaluated by enzymatic hydrolysis using Acremonium cellulase and characterized by X-ray diffraction and scanning electron microscopy. Glucose and xylose yields by wet disk milling, ball milling, and hot-compressed water treatment were 78.5% and 41.5%, 89.4% and 54.3%, and 70.3% and 88.6%, respectively. Wet disk milling and hot-compressed water treatment increased sugar yields without decreasing their crystallinity. The feature size of the wet disk milled rice straw was similar to that of hot-compressed water-treated rice straw. The energy consumption of wet disk milling was lower than that of other pretreatments. Thus, wet disk milling is an economical, practical pretreatment for the enzymatic hydrolysis of lignocellulosic biomass, especially herbaceous biomass such as rice straw.  相似文献   

3.
Bak JS  Ko JK  Han YH  Lee BC  Choi IG  Kim KH 《Bioresource technology》2009,100(3):1285-1290
Rice straw was irradiated using an electron beam at currents and then hydrolyzed with cellulase and beta-glucosidase to produce glucose. The pretreatment by electron beam irradiation (EBI) was found to significantly increase the enzyme digestibility of rice straw. Specifically, when rice straw that was pretreated by EBI at 80 kGy at 0.12 mA and 1 MeV was hydrolyzed with 60 FPU of cellulase and 30 CBU of beta-glucosidase, the glucose yield after 132 h of hydrolysis was 52.1% of theoretical maximum. This value was significantly higher than the 22.6% that was obtained when untreated rice straw was used. In addition, SEM analysis of pretreated rice straw revealed that EBI caused apparent damage to the surface of the rice straw. Furthermore, EBI pretreatment was found to increase the crystalline portion of the rice straw. Finally, the crystallinity and enzyme digestibility were found to be strongly correlated between rice straw samples that were pretreated by EBI under different conditions.  相似文献   

4.
A CO2-added ammonia explosion pretreatment was performed for bioethanol production from rice straw. The pretreatment conditions, such as ammonia concentration, CO2 loading level, residence time, and temperature were optimized using response surface methodology. The response for optimization was defined as the glucose conversion rate. The optimized pretreatment conditions resulting in maximal glucose yield (93.6 %) were determined as 14.3 % of ammonia concentration, 2.2 MPa of CO2 loading level, 165.1 °C of temperature, and 69.8 min of residence time. Scanning electron microscopy analysis showed that pretreatment of rice straw strongly increased the surface area and pore size, thus increasing enzymatic accessibility for enzymatic saccharification. Finally, an ethanol yield of 97 % was achieved via simultaneous saccharification and fermentation. Thus, the present study suggests that CO2-added ammonia pretreatment is an appropriate process for bioethanol production from rice straw.  相似文献   

5.
Cellulase, Tween 80, and β-glucosidase loading were studied and optimized by response surface methodology to improve saccharification. Microwave alkali-pretreated rice straw used as substrate for onsite enzyme production by Aspergillus heteromorphus and Trichoderma reesei. The highest enzymatic hydrolysis (84%) was obtained from rice straw at crude enzyme loading of 10 FPU/gds of cellulase, 0.15% Tween 80, and 100 international unit/g dry solids of β-glucosidase activities. Enzymatic hydrolyzate of pretreated rice straw was used for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis, and by co-culture of both. The yield of ethanol was 0.50, 0.47, and 0.48 gp/gs by S. cerevisiae, S. stipitis, and by co-culture, respectively, using pretreated rice straw hydrolyzate. The co-culture of S. cerevisiae and S. stipitis produced 25% more ethanol than S. cerevisiae alone and 31% more ethanol than S. stipitis alone. During anaerobic fermentation 65.08, 36.45, and 50.31 μmol/ml CO2 released by S. cerevisiae, S. stipitis, and by co-culture, respectively. The data indicated that saccharification efficiency using optimized crude enzyme cocktail was good, and enzymatic hydrolyzate could be fermented to produce ethanol.  相似文献   

6.
Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.  相似文献   

7.
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm?1 due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g?1 and 0.379 g g?1, respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g?1 and 0.358 g g?1, respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.  相似文献   

8.
Summary Rice straw was treated with NaOH, peracetic acid (PA), and sodium chlorite (NaClO2). Quantitative changes in the composition of the treated straw, crystallinity of the treated straw and extracted cellulose, and susceptibility of the treated straw to Trichoderma reesei cellulase were studied. The alkali treatment resulted in a remarkable decrease in hemicellulose as well as lignin. Consequently, the recovery of residual straw after NaOH treatment was lowest among the three chemical reagents evaluated. The treatment with PA or NaCIO2 resulted in a slight loss in hemicellulose and cellulose in the straw. The three chemical treatments caused little or no breakdown of the crystalline structure of cellulose in the straw. The treated straw was solubilized with the culture filtrate of T. reesei. The degree of enzymatic solubilization relative to the amount of residual straw was 69% after treatment with 0.25 N NaOH, 42% after treatment with 20% PA, and 50% after treatments with NaClO2 (twice). The degree of enzymatic solubilization relative to the amount of the untreated straw, however, was 30% after treatment with 0.25 N NaOH, 32% after treatment with 20% PA, and 37% after treatments with NaClO2 (twice).  相似文献   

9.
The aim of this work was to study the feasibility of using sugarcane tops as feedstock for the production of bioethanol. The process involved the pretreatment using acid followed by enzymatic saccharification using cellulases and the process was optimized for various parameters such as biomass loading, enzyme loading, surfactant concentration and incubation time using Box–Behnken design. Under optimum hydrolysis conditions, 0.685 g/g of reducing sugar was produced per gram of pretreated biomass. The fermentation of the hydrolyzate using Saccharomyces cerevisae produced 11.365 g/L of bioethanol with an efficiency of about 50%. This is the first report on utilization of sugarcane tops for bioethanol production.  相似文献   

10.
11.
Correlating the effect of pretreatment on the enzymatic hydrolysis of straw   总被引:4,自引:0,他引:4  
Avicell, Alkali-treated straw cellulose (ATSC), and wheat straw were ball-milled to reduce crystallinity; wheat straw was delignified by hot (120 degrees C) sodium hydroxide solutions of various concentrations. The physically and chemically pretreated cellulosic materials were hydrolyzed by the cellulases of Fusarium oxysporum strain F3. Enzymic hydrolysis data were fitted by the hyperbolic correlation of Holtzapple, which involves two kinetic parameters, the maximum conversion (X(max)), and the enzymic hydrolysis time corresponding to 50% of X(max) (t(1/2)). An empirical correlation between X(max) and cellulose crystallinity, lignin content, and degree of delignification has been found under our experimental conditions. Complete cellulose hydrolysis is shown to be possible at less than 60% crystallinity indices or less than 10% lignin content.  相似文献   

12.
Bioprocess and Biosystems Engineering - Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of...  相似文献   

13.
Enhanced enzymatic saccharification of rice straw by microwave pretreatment   总被引:1,自引:0,他引:1  
Ma H  Liu WW  Chen X  Wu YJ  Yu ZL 《Bioresource technology》2009,100(3):1279-1284
In this study, Box-Behnken design and response surface methodology were employed to plan experiments and optimize the microwave pretreatment of rice straw. Experimental results show that microwave intensity (MI), irradiation time (IT) and substrate concentration (SC) were main factors governing the enzymatic saccharification of rice straw. The maximal efficiencies of cellulose, hemicellulose and total saccharification were respectively increased by 30.6%, 43.3% and 30.3% under the optimal conditions of MI 680 W, IT 24 min and SC 75 g/L. The chemical composition analysis of straw further confirmed that microwave pretreatment could disrupt the silicified waxy surface, break down the lignin-hemicellulose complex and partially remove silicon and lignin.  相似文献   

14.
Sun F  Chen H 《Bioresource technology》2008,99(14):6156-6161
Considering the practical technology-economy of glycerol processing from oleochemicals industry, the ensuing work was proposed to further explore the atmospheric aqueous glycerol autocatalytic organosolv pretreatment (AAGAOP) to improve the enzymatic hydrolysis of lignocellulosic biomass. With the liquid-solid ratio of 20 g g(-1) at 220 degrees C for 3h, the AAGAOP enabled wheat straw to remove approximately 70% hemicelluloses and approximately 65% lignin, with approximately 98% cellulose retention. The pretreated fiber was achieved with approximately 90% of the enzymatic hydrolysis yield after 48 h. At oven-drying, dehydration was likely to cause the hornification of fiber, which was responsible for the low enzymatic hydrolysis of dried fiber. With SEM observations, the AAGAOP disrupted wheat straw into thin and fine fibrils, with a small average size and more surface area. The AAGAOP technique, as a novel strategy, enhanced the enzymatic hydrolysis of lignocellulosic biomass by removing the chemically compositional barrier and altering the physically structural impediment.  相似文献   

15.
Abstract

Myceliophthora thermophila encodes for large number of carbohydrate-active enzymes (CAZymes) involved in lignocellulosic biomass degradation. The mould was grown on rice straw in solid state fermentation at pH 5.0 and 45?°C that produced high levels of cellulolytic and xylanolytic enzymes i.e. 2218.12, 515.23, 478.23, 13.34?U/g DMR for xylanase, CMCase, FPase and β-glucosidase, respectively. The secretome analysis of M. thermophila BJAMDU5 by mass spectroscopy, described 124 different proteins with majority of CAZymes consisting of glycosyl hydrolases (GH), lytic polysaccharide mono-oxygenases (LPMO), carbohydrate esterases (CE) and polysaccharide lyases (PL). Furthermore, the enzyme cocktail of the mould was evaluated for hydrolysis of steam treated rice straw that produced 184.59?mg/g substrate reducing sugars after 24?h, which was used for production of bioethanol by using fast fermenting yeast Saccharomyces cerevisiae resulting in high production of bioethanol.  相似文献   

16.
The combination of low severity steam explosion and superfine grinding has been studied with respect to side products generation and enzymatic hydrolysis efficiency. Chemical compositions, fiber characteristics and composed cells contents in the superfine ground product and the ground residue particles produced by superfine grinding were also studied. At the determined parameters using FJM-200 fluidized bed opposed jet mill, 78% superfine ground steam-exploded rice straw (SERS) products with the mean fiber length of 60 μm were obtained, the particles yield was 179% higher than that from the native rice straw (RS). Enzymatic hydrolysis, chemical composition, fiber characteristics and composed cells proportion of the superfine ground SERS product and the ground residue all show great differences. The difference in enzymatic hydrolysis and structural properties indicates that superfine grinding is a good way to fractionate SERS into easily bio-converted part and difficultly hydrolysed part.  相似文献   

17.
Summary Three different pretreatment methods with n-butylamine (n-BA) were used to obtain fermentable sugars in a high yield from rice straw. The optimal conditions of each method were as follows: treating at boiling point for 1 h under refluxing in 10 w/w% n-BA with the weight ratio of n-BA to original rice straw more than 1.0, autoclaving at 120°C for 1 h in 1 w/w% n-BA with the weight ratio more than 0.1, and wetting for 2 h with the circulating condensate of the vapour evaporated from 2.5 w/w% n-BA with the weight ratio more than 0.8. Soaking rice straw with n-BA before the above pretreatments was not needed. For the circulation pretreatment, the overall cumulative yield of total sugars (70% of cellulose and hemicellulose in original rice straw) was best for both pretreatment and enzymatic solubilization steps, because there was no decomposition of monosaccharides during the pretreatment. Furthermore, the optimal degree of delignification for enzymatic solubilization of the pretreated rice straw was approximately 60% of lignin in the original.  相似文献   

18.
Lu X  Xi B  Zhang Y  Angelidaki I 《Bioresource technology》2011,102(17):7937-7940
The energy efficiency of microwave-assisted dilute sulfuric acid pretreatment of rape straw for the production of ethanol was investigated. Different microwave energy inputs and solid loadings were tested to find economic pretreatment conditions. The lowest energy consumption was observed when solid loading and energy input were fixed at 50% (w/w) and 54 kJ (900 W for 1 min), respectively, and amounted to 5.5 and 10.9 kJ to produce 1 g of glucose after enzymatic hydrolysis and 1 g ethanol after fermentation, respectively. In general, 1 g ethanol can produce about 30 kJ of energy, and therefore, the energy input for the pretreatment was only 35% of the energy output. The approach developed in this study resulted in 92.9% higher energy savings for producing 1 g ethanol when compared with the results of microwave pretreatments previously reported.  相似文献   

19.
20.
An abundant agricultural residue, rice straw (RS) was pretreated using ammonia fiber expansion (AFEX) process with less than 3% sugar loss. Along with commercial cellulase (Spezyme® CP) at 15 filter paper unit/g of glucan, the addition of Multifect® Xylanase at 2.67 mg protein/g glucan and Multifect® Pectinase at 3.65 mg protein/g glucan was optimized to greatly increase sugar conversion of AFEX-treated RS. During enzymatic hydrolysis even at 6% glucan loading (equivalent to 17.8% solid loading), about 80.6% of glucan and 89.6% of xylan conversions (including monomeric and oligomeric sugars) were achieved. However, oligomeric glucose and xylose accounted for 12.3% of the total glucose and 37.0% of the total xylose, respectively. Comparison among the three ethanologenic strains revealed Saccharomyces cerevisiae 424A(LNH-ST) to be a promising candidate for RS hydrolysate with maximum ethanol metabolic yield of 95.3% and ethanol volumetric productivity of 0.26 g/L/h. The final concentration of ethanol at 37.0 g/L was obtained by S. cerevisiae 424A(LNH-ST) even with low cell density inoculum. A biorefinery combining AFEX pretreatment with S. cerevisiae 424A(LNH-ST) in separate hydrolysis and fermentation could achieve 175.6 g EtOH/kg untreated rice straw at low initial cell density (0.28 g dw/L) without washing pretreated biomass, detoxification, or nutrient supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号