首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This immunocytochemical study of 5-HT neurons and fibers in the nervous system of C. aspersa corroborate previous findings and describe new 5-HT neurons and their connections, mainly between the central nervous system and the tentacular sensory organs. We found a number of networks, fascicles, and neurons that show constant and symmetrical location. Three networks were found at the tip of the posterior tentacle: underlying the olfactory epithelium, in the neuropil of the tentacular ganglion (TG), and in the ocular capsule. The TG also contains a ventral 5-HT fascicle. A group of 30-40 serotoninergic fibers run through the tentacular connective from the postcerebrum to the tentacular ganglion. This 5-HT fascicle has a lateral position in the postcerebrum (lateral fascicle of the postcerebrum) and a subcortical location in the procerebrum (subcortical fascicle of the procerebrum). The optic nerve also has a small group of 5-HT fibers. Seven serotoninergic neurons were found in each cerebral ganglion: two giant neurons, one medium-sized, and four small neurons. Three different types of fascicles are in the postcerebrum: fascicles proceeding from the suboesophageal connectives, a lateral fascicle, and a commisural fascicle. Each cerebral ganglion region (pro-, meso- and postcerebrum) has a 5-HT network with a particular pattern of distribution and morphology. The suboesophageal ganglia show the highest concentration of 5-HT neurons (large, medium-sized, and small neurons).  相似文献   

2.
The tentacle of terrestrial snail with olfactory organs on the tips display complex behavior when snail investigates the new environment. We reconstructed the trajectory of the tentacle in three dimensions from two simultaneous video recordings in freely moving snail without odor and after odor application. We found that without oder the snail displayed continuous environment scanning with elongated tentacles. Odor application elicited startle-like short-term flexions of the tentacle which were independent from odor concentration and concentration-dependent gradual tentacle contraction. Identified central motoneuron MtC3 is known to produce the most part of the central tentacle retraction to the noxious stimuli. In nose-brain preparation the MtC3 responded to odors in concentration-dependent manner similar by dynamics and duration to the concentration-dependent gradual tentacle contraction in intact snail. It suggests that the MtC3 provides the central control of the extent of the scanning area by limiting the tentacle length. The MtC3-related gradual contraction of the tentacle can be aimed to tune the olfactory behavior of the terrestrial snail to the particular odor environment.  相似文献   

3.
The administration of l-DOPA is the standard treatment for Parkinson’s disease (PD). However, the symptomatic relief provided by long-term administration may be compromised by l-DOPA-induced dyskinesia (LID) that presents as adverse fluctuations in motor responsiveness and progressive loss of motor control. In the later stages of PD, raphestriatal serotonin neurons compensate for the loss of nigrostriatal dopamine (DA) neurons by converting and releasing DA derived from exogenous l-DOPA. Since the serotonin system does not have an autoregulatory mechanism for DA, raphe-mediated striatal DA release may fluctuate dramatically and precede the development of LID. The 6-hydroxydopamine lesioned rats were treated with l-DOPA (6 mg/kg) and benserazide (15 mg/kg) daily for 3 weeks to allow for the development of abnormal involuntary movement score (AIMs). In rats with LID, chronic treatment with l-DOPA increased striatal DA levels compared with control rats. We also observed a relative increase in the expression of striatal l-amino-acid decarboxylase (AADC) in LID rats, even though tyrosine hydroxylase (TH) expression did not increase. The administration of l-DOPA also increased striatal serotonin immunoreactivity in LID rats compared to control rats. Striatal DA and 5-hydroxytryptamine (5-HT) levels were negatively correlated in l-DOPA-treated rats. These results of this study reveal that 5-HT contributes to LID. Striatal DA positively influences LID, while 5-HT is negatively associated with LID. Finally, we suggest that by strategic modification of the serotonin system it may be possible to attenuate the adverse effects of chronic l-DOPA therapy in PD patients.  相似文献   

4.
Procerebrum is the central part of the olfactory system in terrestrial snails. Spontaneous rhythmic oscillations were described in this structure. The role of these oscillations in the mechanisms of odor perception and discrimination is unknown yet. Electrical activity of the Helix procerebrum was recorded in vivo. Changes in spontaneous rhythmic oscillations in response to olfactory stimulation were observed. Within the first 10 s after odor application (cineole) in low concentration, a statistically significant decrease in the frequency and increase in the amplitude of procerebrum oscillations were revealed in freely behaving animals. Timing of those changes corresponded to the time of defensive reaction realization of the tentacle withdrawal. The increase in the amplitude and a tendency to a decrease in the frequency of oscillations in response to odor application in high concentration were observed in time period 11-20 s, which corresponded to an increased duration of tentacle withdrawal. The results suggest an implicit relation of the amplitude and frequency of oscillations in odor perception and discrimination.  相似文献   

5.
In order to examine the acute effects of l-DOPA treatment following 6-hydroxydopamine (6-OHDA) injection into rat medial forebrain bundle (MFB). Sprague–Dawley rats (n = 48) received either 6-OHDA, via intracranial unilateral injection, into the MFB (experimental group) or saline 0.9% (control group). Administration of l-DOPA or saline 0.9% began 1 month after the 6-OHDA injection for 10 consecutive days. Within 3 days, an increase in the density of striatal tyrosine hydroxylase (TH) immunoreactive fibers within the striatum, when compared to the control group was observed. There was no difference in the loss of substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons between. The greater density of TH fibers in the striatum following l-DOPA may be related to recovery of the DA phenotype and/or sprouting of TH axon terminals. Only animals with severe cell loss in the SNpc experienced abnormal involuntary movements (AIMs) or “dyskinesias” in response to l-DOPA, which did not correlate with striatal TH fiber density, suggesting that induction of TH-positive fibers does not contribute to the occurrence of dyskinesia. The relationship between cell loss, fiber density and AIM to the abundance of markers of microglial activation were also examined. Iba-1, a microglial marker, immunoreactivity was not affected by l-DOPA treatment, was not correlated with the severity of AIM indicating that microglial activation does not contribute to dyskinetic phenomena.  相似文献   

6.
The digit‐like extensions (the digits) of the tentacular ganglion of the terrestrial slug Limax marginatus are the cell body rich region in the primary olfactory system, and they contain primary olfactory neurons and projection neurons that send their axons to the olfactory center via the tentacular nerves. Two cell clusters (the cell masses) at the bases of the digits form the other cell body rich regions. Although the spontaneous slow oscillations and odor responses in the tentacular nerve have been studied, the origin of the oscillatory activity is unknown. In the present study, we examined the contribution of the neurons in the digits and cell masses to generation of the tentacular nerve oscillations by surgical removal from the whole tentacle preparations. Both structures contributed to the tentacular oscillations, and surgical isolation of the digits from the whole tentacle preparations still showed spontaneous oscillations. To analyze the dynamics of odor‐processing circuits in the digits and tentacular ganglia, we studied the effects of γ‐aminobutyric acid, glutamate, and acetylcholine on the circuit dynamics of the oscillatory network(s) in the peripheral olfactory system. Bath or local puff application of γ‐aminobutyric acid to the cell masses decreased the tentacular nerve oscillations, whereas the bath or local puff application of glutamate and acetylcholine to the digits increased the digits' oscillations. Our results suggest the existence of two intrinsic oscillatory circuits that respond differentially to endogenous neurotransmitters in the primary olfactory system of slugs. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 304–318, 2004  相似文献   

7.
The digit-like extensions (the digits) of the tentacular ganglion of the terrestrial slug Limax marginatus are the cell body rich region in the primary olfactory system, and they contain primary olfactory neurons and projection neurons that send their axons to the olfactory center via the tentacular nerves. Two cell clusters (the cell masses) at the bases of the digits form the other cell body rich regions. Although the spontaneous slow oscillations and odor responses in the tentacular nerve have been studied, the origin of the oscillatory activity is unknown. In the present study, we examined the contribution of the neurons in the digits and cell masses to generation of the tentacular nerve oscillations by surgical removal from the whole tentacle preparations. Both structures contributed to the tentacular oscillations, and surgical isolation of the digits from the whole tentacle preparations still showed spontaneous oscillations. To analyze the dynamics of odor-processing circuits in the digits and tentacular ganglia, we studied the effects of gamma-aminobutyric acid, glutamate, and acetylcholine on the circuit dynamics of the oscillatory network(s) in the peripheral olfactory system. Bath or local puff application of gamma-aminobutyric acid to the cell masses decreased the tentacular nerve oscillations, whereas the bath or local puff application of glutamate and acetylcholine to the digits increased the digits' oscillations. Our results suggest the existence of two intrinsic oscillatory circuits that respond differentially to endogenous neurotransmitters in the primary olfactory system of slugs.  相似文献   

8.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   

9.
The current study investigated the olfactory sensitivity of the blackspot sea bream to amino acids, odorants associated with food detection in fish, and compared the efficacy of two different experimental methods: multi-unit recording from the olfactory nerve and the electro-olfactogram (EOG). Twenty essential amino acids plus l-DOPA evoked clear, concentration-dependent olfactory responses using both methods, with estimated thresholds of 10−8.5–10−6.2 M (nerve recording) and 10−7.5–10−4.8 M (EOG). The most potent amino acids were l-cysteine, l-methionine (both sulphur-containing), l-alanine, l-leucine (both neutral), l-glutamine (amide-containing) and l-serine (hydroxyl-containing). The least potent were l-proline (secondary α-amino group), the aromatic amino acids and glycine (simplest). Although the rank order of olfactory potency was similar for the two methods used, and the calculated thresholds given by the two methods were positively correlated, the sensitivity of the EOG was consistently lower than multi-unit recording by approximately one order of magnitude, presumably due to the electrical shunting effect of seawater. As in freshwater, the EOG could be a valid method for comparing olfactory potency of different odorants in stenohaline marine fish; however, for absolute ‘biological’ thresholds, a more invasive recording technique, such as multi-unit recording from the olfactory nerve, should be used.  相似文献   

10.
The tentacle withdrawal reflex of snails is perhaps the fastest, most sensitive reflex in the animals' repertoire. We have investigated the sensory inputs to a major motoneuron (C3) mediating the reflex. The cell C3 is sensitive to both chemical and mechanical stimulation, but there is little or no discrimination of quality in chemical stimuli. Small increments in the concentration of chemical stimuli produce large changes in neuronal responses. When chemicals are applied to the afferent nerve, the effects are comparable to those caused by applications to the olfactory epithelium, suggesting that the transducing elements are unspecialized. The afferent pathway is independent of the procerebrum, which is the primary olfactory lobe. Two excitatory synaptic inputs are identified, both of which originate in the tentacle, propagate centrally and synapse directly onto C3. A small, low threshold input is assigned to dendritic sites distant from the soma. A larger, higher threshold input is assigned to proximal dendritic sites. The latter input is largely responsible for the strong activation of C3 following noxious stimulation of the tentacle. The sensory inputs to C3 have properties similar to those of fibres in the nasal branch of the vertebrate trigeminal nerve.  相似文献   

11.
We used nystatin-patch techniques to characterize the responses of squid olfactory receptor neurons to the attractive odorant, L-glutamate, and to study mixture interactions between glutamate and the aversive odorant, betaine. We report that glutamate activates a cation-selective conductance that is permeable to Ca2+, K+, and Na+ and which would depolarize squid olfactory receptor neurons under physiological conditions. The responses to glutamate were concentration dependent. The EC50 of individual cells ranged from 0.3 mmol · l−1 to 85.0 mmol · l−1. We found that individual cells were capable of responding to both glutamate and betaine, and that the relative magnitudes of these responses varied from cell to cell. Finally, we report that current responses to binary mixtures of glutamate and betaine are suppressed relative to the sum of the responses to the individual odors in single squid olfactory receptor neurons. Accepted: 20 October 1999  相似文献   

12.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

13.
Tyrosine hydroxylase and Parkinson's disease   总被引:7,自引:0,他引:7  
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation ofl-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditaryl-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment withl-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated thatl-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   

14.
Production of 3,4-dihydroxy phenyl-l-alanine (l-DOPA) using an Egyptian isolate of halophilic black yeast was studied. Optimum aeration level and incubation period for high yield production of l-DOPA were 50 ml medium/250 ml flask with 200 rpm and 36 h, respectively. Two new techniques (addition of aniline or NaCl to the medium) have been investigated to enhance the monophenolase activity and inhibit or reduce diphenolase activity of tyrosinase to form high yield of l-DOPA without more oxidation to melanin. Addition of aniline to tyrosine medium at 3 μl/ml medium enhanced l-DOPA production 2.9 fold, however, addition of NaCl at 20% showed the same amount of l-DOPA as the control. Peptone and ram horn hydrolysate were studied as nitrogen sources instead of tyrosine in the medium and they showed good nitrogen sources for l-DOPA production as tyrosine. Finally, addition of aniline (3 μl/ml) to ram horn hydrolysate was economically feasible and cost effective for l-DOPA production by Egyptian halophilic black yeast.  相似文献   

15.
l-3,4-dihydroxyphenylalanine (l-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of l-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of l-tyrosine (l-Tyr), an l-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on l-Tyr production of PTS inactivation (PTS gluc+ phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of l-Tyr production (q l-Tyr), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q l-Tyr in the PTS+ and the PTS gluc+ strains, respectively. An 8.6-fold increase in l-Tyr yield from glucose was observed in the PTS gluc+ tyrR strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for l-Tyr production caused the synthesis of l-DOPA. One of such strains, having the PTS gluc+ tyrR phenotype, displayed the best production parameters in minimal medium, with a specific rate of l-DOPA production of 13.6 mg/g/h, l-DOPA yield from glucose of 51.7 mg/g and a final l-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of l-DOPA in 50 h.  相似文献   

16.
To elucidate mechanisms that underlie the profound physiological effects of the monoamine precursors 5-hydroxy-l-tryptophan (5-HTP) and l-3,4-dihydroxyphenylalanine (l-DOPA), we examined their action on single monoaminergic neurons isolated from the ganglia of the gastropod snail Lymnaea stagnalis. In isolated serotonergic PeA motoneurons, 5-HTP produced excitation. The effect was mimicked by serotonin at 0.5–1 μM, masked by pretreatment with serotonin at higher concentrations, and abolished by the inhibitor of aromatic amino acid decarboxylase (AAAD) m-hydroxybenzylhydrazine (NSD-1015), the inhibitor of the vesicular monoamine transporter reserpine or the serotonin receptor antagonist mianserin. Exposure of the dopaminergic interneurons RPeD1 to l-DOPA caused a biphasic effect composed of a depolarization followed by a hyperpolarization. AAAD inactivation with NSD-1015, as well as the blockade of dopamine receptors with sulpiride, resulted in the enhancement of the excitatory effect, and the abolition of the inhibitory effect. Dopamine caused hyperpolarization and masked the inhibitory phase of l-DOPA action. The results show that precursors affect the rate of firing of isolated monoaminergic neurons and that their effect is completely or partially mediated by the enhanced synthesis of the respective neurotransmitter, followed by extrasynaptic release of the latter and activation of extrasynaptic autoreceptors.  相似文献   

17.
Surwase SN  Jadhav JP 《Amino acids》2011,41(2):495-506
l-DOPA is an amino acid derivative and most potent drug used against Parkinson’s disease, generally obtained from Mucuna pruriens seeds. In present communication, we have studied the in vitro production of l-DOPA from l-tyrosine by novel bacterium Bacillus sp. JPJ. This bacterium produced 99.4% of l-DOPA from l-tyrosine in buffer (pH 8) containing 1 mg ml−1 cell mass incubated at 40°C for 60 min. The combination of CuSO4 and l-ascorbic acid showed the inducing effect at concentrations of 0.06 and 0.04 mg ml−1, respectively. The activated charcoal 2 mg ml−1 was essential for maximum bioconversion of l-tyrosine to l-DOPA and the crude tyrosinase activity was 2.7 U mg−1 of tyrosinase. Kinetic studies showed significant values of Y p/s (0.994), Q s (0.500) and q s (0.994) after optimization of the process. The production of l-DOPA was confirmed by analytical techniques such as HPTLC, HPLC and GC–MS. This is the first report on rapid and efficient production of l-DOPA from l-tyrosine by bacterial source which is more effective than the plant, fungal and yeast systems.  相似文献   

18.
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential.  相似文献   

19.
Golisz A  Sugano M  Hiradate S  Fujii Y 《Planta》2011,233(2):231-240
Velvetbean (Mucuna pruriens) plants impede the growth of neighboring plants. One compound, 3-(3′,4′-dihydroxyphenyl)-l-alanine (l-DOPA), is responsible for the allelopathic capacity of velvetbean. This compound is an active allelochemical that decreases root growth of several plant species. In mammals, l-DOPA is a well-known therapeutic agent for the symptomatic relief of Parkinson’s disease. However, its mode of action in plants is still not well understood. To address such issues, gene expression in Arabidopsis thaliana plants, which had been exposed to l-DOPA, was analyzed using DNA microarrays. After 6 h of l-DOPA exposure, the expression of 110 genes was significantly upregulated, and the expression of 69 genes was significantly downregulated. These induced genes can be divided into different functional categories, mainly on the basis of subcellular localization, metabolism, and proteins with a binding function or cofactor requirement. Based on these results, we suggest that l-DOPA acts by two mechanisms: it influences amino acid metabolism and deregulates metal homeostasis, especially that of iron, which is required for the fundamental biological processes of all organisms.  相似文献   

20.
Responses of olfactory receptor neurons of spiny lobsters Panulirus argus to two-component mixtures can be shaped by inhibitory events such as odor-activated hyperpolarizations and inhibition of odor-receptor binding (Daniel et al. 1996). In the current study, we extend this analysis to complex mixtures by examining responses of spiny lobster olfactory receptor neurons to mixtures containing up to seven odorants, consisting of adenosine-5′-monophosphate, ammonium, betaine, l-cysteine, l-glutamate, dl-succinate, and taurine. The response to a mixture was often less than the response to its most excitatory component. The effect of adding an excitatory odorant to a mixture depended on olfactory receptor neuron type, composition of the mixture, and which compound was added. In some cases the added excitatory compound had no effect or even decreased the mixture's response intensity, thus demonstrating nonlinear contributions of the components. Response intensities predicted by a noncompetitive model, which is most representative of these olfactory receptor neurons, were improved when the model included a term for empirical measurements of inhibitory binding interactions, suggesting that inhibitory binding interactions are one mechanism contributing to mixture suppression. This model's predictions were accurate for binary mixtures but not for larger mixtures, suggesting that additional inhibitory mechanisms are needed to account for mixture interactions in complex mixtures. Accepted: 24 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号