首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Federal law prohibits pre-employment physical examination of firefighter recruits, but these workers must perform intense exercise in arduous environments. Components of physical fitness of rookie firefighters (n = 115; 104 men, mean +/- SD: age = 28.3 +/- 4.3 years; height = 1.76 +/- 0.07 m; weight = 83.2 +/- 13.9 kg; percent body fat = 17 +/- 8%) were measured upon being hired and following a 16-week exercise training program (1 h.d(-1), 3 d.wk(-1)) designed to improve physical fitness. Maximum aerobic capacity (VO2max) was estimated from submaximal cycle ergometry, body composition from skinfold tests, flexibility from a sit and reach test, strength by hand grip dynamometry, and muscle endurance by a push-up test. The results are as follows (*, p 相似文献   

2.
One role of Army Reserved Officer's Training Corps (ROTC) programs is to physically prepare cadets for the demands of a military career. Cadets participate in physical training 3 days per week as part of their military science curriculum. Limited research has been conducted on the fitness level of ROTC cadets; therefore, the purpose of this study was to profile the physical fitness status of a cadre of ROTC cadets. Forty-three cadets (30 men and 13 women) performed Army Physical Fitness Test (APFT) assessments (2-mile run, 2-minute maximum push-ups and sit-ups) and clinical assessments of fitness (Bruce protocol Vo(2)max, underwater weighing, and 1 repetition maximum [1RM] bench press tests). Mean +/- standard deviations were calculated to provide the physical fitness profile for each parameter. Male cadets (21 +/- 2.2 years; height 177.4 +/- 6.6 cm; mass 79.2 +/- 9.4 kg) scored 49.6 +/- 6.1 ml.kg(-1).min(-1) for Vo(2)max, 14.8 +/- 4.2% fat, 86.5 +/- 24.9 kg 1RM bench press, 2-mile run of 13.97 +/- 1.4 minutes, 70.5 +/- 12.8 sit-ups, and 60.2 +/- 13.2 push-ups. Female cadets (20 +/- 2.4 years; height 165.1 +/- 8.0 cm; mass 63.5 +/- 10.0 kg) scored 40.8 +/- 3.9 ml.kg(-1).min(-1) for Vo(2) max, 23.9 +/- 3.8% fat, 35.3 +/- 8.2 kg 1RM bench press, 2-mile run of 17.0 +/- 1.6 minutes, 65.0 +/- 12.9 sit-ups, and 33.3 +/- 11.2 push-ups. The mean scores were above the 83rd percentile on all APFT items and average (percent fat) to above average (Vo(2)max and men's bench press scores) when compared with peer-age and sex-corrected norms. Only the women's bench press score was below average. With the exception of the women's bench press, these ROTC cadets possessed average to above average levels of fitness.  相似文献   

3.
Competitive field hockey requires a substantial amount of muscular strength, speed, and cardiovascular endurance. It is unknown how these parameters of physical fitness change between preseason conditioning to postseason recovery. Therefore, Division III female field hockey athletes (n = 13) completed tests of muscular strength, body composition, and maximal oxygen uptake (Vo(2)max) during each phase of their season. Muscular strength was assessed using 1 repetition maximum (RM) leg and bench press tests. Body composition was assessed by anthropometry (skinfolds [SKF]), circumferences ([CC]), and bioelectrical impedance analysis (BIA). Incremental treadmill testing was administered to assess Vo(2)max. Vo(2)max was unchanged during the season, although a trend (p > 0.05) was shown for a higher Vo(2)max during and after the season vs. before the season. Upper- (10%) and lower-body strength (14%) decreased (p > 0.05) during the season. Percent body fat (%BF) from BIA, fat mass (FM) from CC, and body mass index (BMI) were significantly lower (p < 0.05) in-season and postseason vs. preseason. In conclusion, preseason training was effective in decreasing %BF and increasing Vo(2)max, yet muscular strength was lost. Coaches should incorporate more rigorous in-season resistance training to prevent strength decrements. Moreover, these data support the superior levels of muscular strength and leanness in these athletes compared with age-matched peers.  相似文献   

4.
The aim of the present study was to establish fat oxidation rates over a range of exercise intensities in a large group of healthy men and women. It was hypothesised that exercise intensity is of primary importance to the regulation of fat oxidation and that gender, body composition, physical activity level, and training status are secondary and can explain part of the observed interindividual variation. For this purpose, 300 healthy men and women (157 men and 143 women) performed an incremental exercise test to exhaustion on a treadmill [adapted from a previous protocol (Achten J, Venables MC, and Jeukendrup AE. Metabolism 52: 747-752, 2003)]. Substrate oxidation was determined using indirect calorimetry. For each individual, maximal fat oxidation (MFO) and the intensity at which MFO occurred (Fat(max)) were determined. On average, MFO was 7.8 +/- 0.13 mg.kg fat-free mass (FFM)(-1).min(-1) and occurred at 48.3 +/- 0.9% maximal oxygen uptake (Vo(2 max)), equivalent to 61.5 +/- 0.6% maximal heart rate. MFO (7.4 +/- 0.2 vs. 8.3 +/- 0.2 mg.kg.FFM(-1).min(-1); P < 0.01) and Fat(max) (45 +/- 1 vs. 52 +/- 1% Vo(2 max); P < 0.01) were significantly lower in men compared with women. When corrected for FFM, MFO was predicted by physical activity (self-reported physical activity level), Vo(2 max), and gender (R(2) = 0.12) but not with fat mass. Men compared with women had lower rates of fat oxidation and an earlier shift to using carbohydrate as the dominant fuel. Physical activity, Vo(2 max), and gender explained only 12% of the interindividual variation in MFO during exercise, whereas body fatness was not a predictor. The interindividual variation in fat oxidation remains largely unexplained.  相似文献   

5.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   

6.
Inspiring a hyperoxic (H) gas permits subjects to exercise at higher power outputs while training, but there is controversy as to whether this improves skeletal muscle oxidative capacity, maximal O(2) consumption (Vo(2 max)), and endurance performance to a greater extent than training in normoxia (N). To determine whether the higher power output during H training leads to a greater increase in these parameters, nine recreationally active subjects were randomly assigned in a single-blind fashion to train in H (60% O(2)) or N for 6 wk (3 sessions/wk of 10 x 4 min at 90% Vo(2 max)). Training heart rate (HR) was maintained during the study by increasing power output. After at least 6 wk of detraining, a second 6-wk training protocol was completed with the other breathing condition. Vo(2 max) and cycle time to exhaustion at 90% of pretraining Vo(2 max) were tested in room air pre- and posttraining. Muscle biopsies were sampled pre- and posttraining for citrate synthase (CS), beta-hydroxyacyl-coenzyme A dehydrogenase (beta-HAD), and mitochondrial aspartate aminotransferase (m-AsAT) activity measurements. Training power outputs were 8% higher (17 W) in H vs. N. However, both conditions produced similar improvements in Vo(2 max) (11-12%); time to exhaustion (approximately 100%); and CS (H, 30%; N, 32%), beta-HAD (H, 23%; N, 21%), and m-AsAT (H, 21%; N, 26%) activities. We conclude that the additional training stimulus provided by training in H was not sufficient to produce greater increases in the aerobic capacity of skeletal muscle and whole body Vo(2 max) and exercise performance compared with training in N.  相似文献   

7.
Aerobic fitness and percent body fat were measured in a sample of 438 male Army recruits between the ages of 17 and 30 prior to the commencement of training. The sample came from all areas of England and Wales. Aerobic fitness, as represented by maximal oxygen uptake (VO2 max), was predicted from the Astrand submaximal bicycle heart rate test. Body fat was predicted from four skinfold measurements. Total group means +/- SD were: age, 19.5 +/- 2.5 years; VO2 max 41.7 +/- 8.3 ml/kg . min; and body fat, 14.5 +/- 4.8% of body weight. VO2 max varied with age, athletic participation and aptitude score. No relationship was found with occupation of parent, prior civilian occupation or smoking severity. When adjusted for methodological differences, VO2 max was slightly below similar Army entrants in Norway and the United States.  相似文献   

8.
To determine the relation between habitual endurance exercise status and the age-associated decline in maximal aerobic capacity [i.e., maximal O(2) consumption (Vo(2 max))] in men, we performed a well-controlled cross-sectional laboratory study on 153 healthy men aged 20-75 yr: 64 sedentary and 89 endurance trained. Vo(2 max) (ml. kg(-1). min(-1)), measured by maximal treadmill exercise, was inversely related to age in the endurance-trained (r = -0.80) and sedentary (r = -0.74) men but was higher in the endurance-trained men at any age. The rate of decline in Vo(2 max) with age (ml. kg(-1). min(-1)) was greater (P < 0.001) in the endurance-trained than in the sedentary men. Whereas the relative rate of decline in Vo(2 max) (percent decrease per decade from baseline levels in young adulthood) was similar in the two groups, the absolute rate of decline in Vo(2 max) was -5.4 and -3.9 ml. kg(-1). min(-). decade(-1) in the endurance-trained and sedentary men, respectively. Vo(2 max) declined linearly across the age range in the sedentary men but was maintained in the endurance-trained men until approximately 50 yr of age. The accelerated decline in Vo(2 max) after 50 yr of age in the endurance-trained men was related to a decline in training volume (r = 0.46, P < 0.0001) and was associated with an increase in 10-km running time (r = -0.84, P < 0.0001). We conclude that the rate of decline in maximal aerobic capacity during middle and older age is greater in endurance-trained men than in their sedentary peers and is associated with a marked decline in O(2) pulse.  相似文献   

9.
This study compared a carbohydrate-, protein-, and ribose-containing repletion drink vs. carbohydrates alone during 8 weeks of aerobic training. Thirty-two men (age, mean ± SD = 23 ± 3 years) performed tests for aerobic capacity (V(O2)peak), time to exhaustion (TTE) at 90% V(O2)peak, and percent body fat (%fat), and fat-free mass (FFM). Testing was conducted at pre-training (PRE), mid-training at 3 weeks (MID3), mid-training at 6 weeks (MID6), and post-training (POST). Cycle ergometry training was performed at 70% V(O2)peak for 1 hours per day, 5 days per week for 8 weeks. Participants were assigned to a test drink (TEST; 370 kcal, 76 g carbohydrate, 14 g protein, 2.2 g d-ribose; n = 15) or control drink (CON; 370 kcal, 93 g carbohydrate; n = 17) ingested immediately after training. Body weight (BW; 1.8% decrease CON; 1.3% decrease TEST from PRE to POST), %fat (5.5% decrease CON; 3.9% decrease TEST), and FFM (0.1% decrease CON; 0.6% decrease TEST) decreased (p ≤ 0.05), whereas V(O2)peak (19.1% increase CON; 15.8% increase TEST) and TTE (239.1% increase CON; 377.3% increase TEST) increased (p ≤ 0.05) throughout the 8 weeks of training. Percent decreases in %fat from PRE to MID3 and percent increases in FFM from PRE to MID3 and MID6 were greater (p ≤ 0.05) for TEST than CON. Overall, even though the TEST drink did not augment BW, V(O2)peak, or TTE beyond carbohydrates alone, it did improve body composition (%fat and FFM) within the first 3-6 weeks of supplementation, which may be helpful for practitioners to understand how carbohydrate-protein recovery drinks can and cannot improve performance in their athletes.  相似文献   

10.
The objectives of this study were to 1) identify the independent effects of exercise (aerobic or resistance training) and weight loss on whole body insulin sensitivity and 2) determine if aerobic or resistance training would be more successful for maintaining improved whole body insulin sensitivity 1 yr following weight loss. Subjects were 97 healthy, premenopausal women, body mass index (BMI) 27-30 kg/m(2). Following randomized assignment to one of three groups, diet only, diet + aerobic, or diet + resistance training until a BMI <25 kg/m(2) was achieved, body composition, fat distribution, and whole body insulin sensitivity were determined at baseline, in the weight reduced state, and at 1-yr follow up. The whole body insulin sensitivity index (S(I)) was determined using a frequently sampled intravenous glucose tolerance test. Results of repeated-measures ANOVA indicated a significant improvement in S(I) following weight loss. However, there were no group or group×time interactions. At 1-yr follow up, there were no significant time or group interactions for S(I;) however, there was a significant group×time interaction for S(I). Post hoc analysis revealed that women in the aerobic training group showed a significant increased S(I) from weight reduced to 1-yr follow up (P < 0.05), which was independent of intra-abdominal adipose tissue and %fat. No significant differences in S(I) from weight reduced to 1-yr follow up were observed for diet only or diet + resistance groups. Additionally, multiple linear regression analysis revealed that change in whole body insulin sensitivity from baseline to 1-yr follow up was independently associated with the change in Vo(2max) from baseline to 1-yr follow up (P < 0.05). These results suggest that long-term aerobic exercise training may conserve improvements in S(I) following weight loss and that maintaining cardiovascular fitness following weight loss may be important for maintaining improvements in S(I).  相似文献   

11.
Competitive collegiate swimmers commonly take a month off from swim training after their last major competition. This abrupt cessation of intense physical training has not been well studied and may lead to physiopsychological decline. The purpose of this investigation was to examine the effects of swim detraining (DT) on body composition, aerobic fitness, resting metabolism, mood state, and blood lipids in collegiate swimmers. Eight healthy endurance-trained swimmers (V(O2)peak, 46.7 ± 10.8 ml · kg(-1) · min(-1)) performed 2 identical test days, 1 in the trained (TR) state and 1 in the detrained (~5 weeks) state (DT). Body composition and circumferences, maximal oxygen consumption (V(O2)peak), resting metabolism (RMR), blood lipids, and mood state were measured. After DT, body weight (TR, 68.9 ± 9.7 vs. DT, 69.8 ± 9.8 kg; p = 0.03), fat mass (TR, 14.7 ± 7.6 vs. DT, 16.5 ± 7.4 kg; p = 0.001), and waist circumference (TR, 72.7 ± 3.1 vs. DT, 73.8 ± 3.6 cm; p = 0.03) increased, whereas V(O2)peak (TR, 46.7 ± 10.8 vs. DT, 43.1 ± 10.3 ml · kg(-1) · min(-1); p = 0.02) and RMR (TR, 1.34 ± 0.2 vs. DT, 1.25 ± 0.17 kcal · min(-1); p = 0.008) decreased, and plasma triglycerides showed a trend to increase (p = 0.065). Our data suggest that DT after a competitive collegiate swim season adversely affects body composition, fitness, and metabolism. Athletes and coaches need to be aware of the negative consequences of detraining from swimming, and plan off-season training schedules accordingly to allow for adequate rest/recovery and prevent overuse injuries. It's equally important to mitigate the negative effects on body composition, aerobic fitness and metabolism so performance may continue to improve over the long term.  相似文献   

12.
Longitudinal changes in aerobic power in older men and women.   总被引:2,自引:0,他引:2  
The purpose of this study was to describe the longitudinal (10 yr) decline in aerobic power [maximal O(2) uptake (Vo(2 max))] and anaerobic threshold [ventilatory threshold (T(Ve))] of older adults living independently in the community. Ten years after initial testing, 62 subjects (34 men, mean age 73.5 +/- 6.4 yr; 28 women, 72.1 +/- 5.3 yr) achieved Vo(2 max) criteria during treadmill walking tests to the limit of tolerance, with T(Ve) determined in a subset of 45. Vo(2 max) in men showed a rate of decline of -0.43 ml.kg(-1).min(-1).yr(-1), and the decline in Vo(2 max) was consequent to a lowered maximal heart rate with no change in the maximum O(2) pulse. The women showed a slower rate of decline of Vo(2 max) of -0.19.ml.kg(-1).min(-1).yr(-1) (P < 0.05), again with a lowered HR(max) and unchanged O(2) pulse. In this sample, lean body mass was not changed over the 10-yr period. Changes in Vo(2 max) were not significantly related to physical activity scores. T(Ve) showed a nonsignificant decline in both men and women. Groupings of young-old (65-72 yr at follow-up) vs. old-old (73-90 yr at follow-up) were examined. In men, there were no differences in the rate of Vo(2 max) decline. The young-old women showed a significant decline in Vo(2 max), whereas old-old women, initially at a Vo(2 max) of 19.4 +/- 3.1 ml.kg(-1).min(-1), showed no loss in Vo(2 max). The longitudinal data, vs. cross-sectional analysis, showed a greater decline for men but similar estimates of the rates of change in women. Thus the 10-yr longitudinal study of the cohort of community-dwelling older adults who remained healthy, ambulatory, and independent showed a 14% decline in Vo(2 max) in men, and a smaller decline of 7% in women, with the oldest women showing little change over the 10-yr period.  相似文献   

13.
Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O?max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O?max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O?max, fat-free mass, and fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O?max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O?max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.  相似文献   

14.
The objective of this study was to establish the separate associations between parasympathetic modulations of the heart [evaluated through heart rate (HR) variability (HRV) indexes and postexercise HR recovery (HRR) indexes] with cardiorespiratory fitness and training load. We have measured cardiorespiratory fitness through peak oxygen consumption (Vo2 max) and estimated weekly training load with the Baecke sport score in 55 middle-aged individuals (30.8 +/- 1.8 yr, body mass index 24.5 +/- 0.4 kg/m2). HRV indexes were analyzed at rest under controlled breathing, and HRR was estimated from HR curve fitting after maximal exercise or from measurements of the number of beats recovered at 60 s after exercise. Multiple linear regressions were used to investigate the separate relationships between vagal-related HRV indexes and Vo2 max and Baecke scores. On the basis of their Vo2 max and Baecke scores, subjects were classified as fit or unfit and as low trained (LT) or moderately trained (MT), which yielded four groups: UnfitLT, UnfitMT, FitLT, and FitMT. Vagal-related HRV indexes were positively correlated with Vo2 max (P < 0.05) but not with Baecke scores. In contrast, HRR indexes were related to Baecke scores (P < 0.05) but not with Vo2 max. FitLT and FitMT had significantly higher (P < 0.05) normalized vagal-related HRV indexes than UnfitLT and UnfitMT, but HRR did not change. Moderate training was associated with significantly lower HRR indexes both in UnfitMT and FitMT compared with UnfitLT and FitLT, but there was no difference in vagal-related HRV indexes. These results indicate that vagal-related HRV indexes are related more to cardiorespiratory fitness, whereas HRR appears to be better associated with training load.  相似文献   

15.
Objective: To determine what effect diet‐induced ~12 kg weight loss in combination with exercise training has on body composition and resting energy expenditure (REE) in premenopausal African‐American (AA) and European‐American (EA) women. Methods and Procedures: This study was a longitudinal, randomized weight loss clinical intervention, with either aerobic (AT), resistance (RT), or no exercise training (NT). Forty‐eight AA and forty‐six EA premenopausal overweight (BMI between 27 and 30) women underwent weight loss to a BMI <25. Body composition (densitometry), REE (indirect calorimetry), maximal oxygen uptake (VO2max), and muscular strength (isometric elbow flexion) were evaluated when subjects were in energy balance. Results: AA women lost less fat‐free mass (FFM, P ≤ 0.05) (47.0 ± 4.6 to 46.9 ± 5.0 kg) than EA women (46.4 ± 4.9 to 45.2 ± 4.6 kg). Regardless of race, RT maintained FFM (P ≤ 0.05) following weight loss (46.9 ± 5.2 to 47.2 ± 5.0 kg) whereas AT (45.4 ± 4.2 to 44.4 ± 4.1 kg) and NT (47.9 ± 4.7 to 46.4 ± 5.1 kg) decreased FFM (P ≤ 0.05). Both AT and NT decreased in REE with weight loss but RT did not. Significant time by group interactions (all P ≤ 0.05) for strength indicated that RT maintained strength and AT did not. Discussion: AA women lost less FFM than EA women during equivalent weight losses. However, following weight loss in both AA and EA, RT conserved FFM, REE, and strength fitness when compared to women who AT or did not train.  相似文献   

16.
This study was performed to evaluate the combined effect of a meal replacement and an alleged weight loss supplement (WLS) on body composition, fitness parameters, and clinical health in moderately overweight college-aged men and women. Body mass, bench press 1 repetition maximum (1RM), leg press 1RM, body composition, V(O2)max, fasting glucose (GLU), and lipid panels were evaluated before (T1) and after (T2) 8 weeks of combined resistance training (RT) and cardiovascular training (CVT). After T1, subjects were randomly assigned in a double-blind fashion to either the WLS (6 men, 7 women; 21 ± 5 years, 168 ± 8 cm, 75.4 ± 12.7 kg, 31.6 ± 7.7%BFAT) or placebo (PLA: 6 men, 6 women; 22 ± 4 years, 174 ± 9 cm, 84.1 ± 8.8 kg, 30.2 ± 5.6%BFAT) group. Both groups performed 3 d · wk(-1) of combined progressive RT (2 × 12 reps of 8 exercises at 75-80% 1RM) and CVT (30 minutes on a cycle ergometer at 70-85% heart rate reserve). Subjects consumed 4 capsules per day and a once-daily meal replacement throughout the protocol. Percent body fat, bench press 1RM, and leg press 1RM significantly improved (p < 0.05) in both groups. Blood GLU (G × T; p = 0.048) improved in WLS and systolic blood pressure (SBP) approached significance (G × T; p = 0.06) in the WLS group. Follow-up analysis of SBP revealed a significant within-group decrease in the WLS group, whereas no within-group changes were found for either group for GLU. Practically speaking, daily supplementation with a meal replacement and a thrice weekly exercise program can increase fitness levels and improve body composition, whereas adding a thermogenic substance provides no additional benefit over fitness or body composition changes but may favorably alter serum markers of clinical health.  相似文献   

17.
Runners Advantage (RA) creatine (Cr) serum has been marketed to increase running performance. To test this claim, cross-country runners completed baseline testing (BASE), an outdoor 5,000-m run followed by treadmill Vo(2)max testing on the same day. Subjects repeated testing after ingesting 5 ml of RA (n = 13) containing 2.5 g of Cr or placebo (n = 11). Heart rate (HR), rating of perceived exertion (RPE), and run time were recorded. With RA (56.48 +/- 8.93 ml.kg(-1.)min(-1)), Vo(2)max was higher (p = 0.01) vs. BASE (54.07 +/- 9.36 ml.kg(-1.)min(-1)), yet the magnitude of the increase was within the coefficient of variation of Vo(2)max. No effect of RA on maximal HR was exhibited, yet Vco(2)max and duration of incremental exercise were significantly higher (p < 0.025) vs. BASE. Vo(2)max was similar in PL (58.85 +/- 6.67 ml.kg(-1).min(-1)) and BASE (57.28 +/- 7.22 ml.kg(-1.)min(-1)). With RA, the 5,000-m time was unchanged, and RPE was lower (p < 0.025) vs. BASE. These data do not support the ergogenic claims of RA in its current form and dose.  相似文献   

18.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

19.
Judgement of exercise performance in birds has been hampered by a paucity of data on maximal aerobic capacity. We measured the maximal rate of oxygen consumption (Vo2,max) in running guinea fowl Numida meleagris, a bird that has been used in several previous studies of avian running. Mean Vo2,max during level treadmill running was 97.5+/-3.7 mL O(2) kg(-1) min(-1) (mean+/-SEM, N=5). Vo2,max was on average 6% higher when the birds ran uphill compared with the value during level running (paired t-test, P=0.041, N=5). The mean basal rate of oxygen consumption (Vo2,bmr) of the same individuals was 7.9+/-0.5 mL O(2) kg(-1) min(-1). Mean factorial aerobic scope based on individually measured values of Vo2,max and Vo2,bmr was 13.2+/-0.6 (mean+/-SEM, N=5). This value was considerably lower than the factorial aerobic scope previously measured during running in Rhea americana, a large flightless ratite. The difference in factorial scope between these two running birds likely reflects the effects of body size as well as size-independent differences in the ability to deliver and use oxygen. These data confirm a previous prediction that birds have a diversity of factorial aerobic scopes similar to that exhibited by mammals.  相似文献   

20.
The emergence of obesity, insulin resistance (IR), and type-2 diabetes (T2DM) in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, T2DM, and IR. Studies in adults show cardiovascular fitness (CVF) to be more important than obesity in predicting IR. We recently demonstrated that a school-based fitness intervention in children who were overweight can improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. The purpose of the study was to determine if a new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by maximum oxygen consumption; VO(2)max) in middle school children who were overweight. Thirty-five middle school children who were overweight (mean age 12 +/- 0.4 years) underwent testing on a power sensor- equipped Cycle Ops Indoor Cycle (IC), as well as body composition by dual x-ray absorptiometry (DXA), and VO(2)max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO(2)max testing, and power produced at 80% of MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the IC at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight (TBW) was 1.5 +/- 0.5. A significant correlation between watts/TBW was seen for VO(2)max (ml/kg/min) (p = 0.03), and significant negative correlation was seen between watts/TBW and fasting insulin (p < 0.05). In middle-school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO(2)max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment at substantially less cost and effort than laboratory-based measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号