首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

2.
Effects of fatigue produced by a maintained 60% isometric loading on electromyographic and isometric force-time and relaxation-time characteristics of human skeletal muscle were studied in 21 males accustomed to strength training. Fatigue loading resulted in a slight but not significant change in the maximal integrated EMG of a maximal isometric contraction, and a large decrease (20.4 +/- 6.3%, p less than 0.001) in maximal force. Fatigue loading increased (p less than 0.05-0.01) neural activation of the muscles during rapidly produced submaximal isometric forces, but had a considerable adverse effect (p less than 0.001) on the corresponding force-time characteristics. Correlations between the relative changes after fatigue in the IEMG/force ratio at the maximal force level, and in the IEMG/force ratios of the early phases of the force-time curve were not significant, but gradually became significant (p less than 0.01) at higher force levels. The average IEMG of the muscles in the relaxation phase of contraction remained unaltered by fatigue, while a marked deleterious change in the relaxation-time variables (p less than 0.001) occurred concomitantly. During the subsequent 3 min rest period considerable (12.1 +/- 7.0%, p less than 0.001) recovery was noted in the maximal force, with smaller (insignificant or p less than 0.05-0.01) changes in the force-time and relaxation-time variables, while the average IEMG of force production decreased (p less than 0.01-0.001). The present findings suggest that fatigue leading to a worsening in force-time, in maximal force and in the relaxation-time parts of a maximal isometric contraction might take place primarily in the contractile processes.  相似文献   

3.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

4.
The aim of this investigation was to determine the differences in vertical ground reaction forces and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 11; age 21 ± 1.63 years; height 181.56 ± 2.61 cm; body mass 93.65 ± 6.84 kg) performed 1 set of 3 repetitions of the power clean, hang-power clean, midthigh power clean, or midthigh clean pull, using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force platform. Differences in peak vertical ground reaction forces (F(z)) and instantaneous RFD between lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical analysis revealed a significantly (p < 0.001) greater peak F(z) during the midthigh power clean (2,801.7 ± 195.4 N) and the midthigh clean pull (2,880.2 ± 236.2 N) compared to both the power clean (2,306.24 ± 240.47 N) and the hang-power clean (2,442.9 ± 293.2 N). The midthigh power clean (14,655.8 ± 4,535.1 N·s?1) and the midthigh clean pull (15,320.6 ± 3,533.3 N·s?1) also demonstrated significantly (p < 0.001) greater instantaneous RFD when compared to both the power clean (8,839.7 ± 2,940.4 N·s?1) and the hang-power clean (9,768.9 ± 4,012.4 N·s?1). From the findings of this study, when training to maximize peak F(z) and RFD the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.  相似文献   

5.
The purpose of this study was to investigate the consistency of commonly reported rapid force characteristics utilizing both automated and manual muscle contraction onset detection methods. Twenty-four healthy volunteers performed isometric strength testing of the plantar flexor muscle group on two nonconsecutive days. Test–retest reliability was evaluated using intraclass correlation coefficients (ICCs), standard errors of measurement (SEM), and the SEM as a percentage of the mean (SEM%) for rate of force development (RFD), relative RFD, contractile impulse, and absolute force–time values at various epoch durations using automated and manual onset detection methods. For all rapid force variables, ICC and SEM% values ranged from 0.52 to 0.96 and 7.56% to 37.56%, respectively. For the majority of these variables (20 of 23), the automated onset detection method resulted in higher ICC and lower SEM% values compared to the manual onset detection method. Regardless of onset detection methodology, the consistency of relative RFD values declined following 50% of MVC. Collectively, these findings indicated that commonly evaluated rapid muscle force variables demonstrated acceptable relative and absolute consistency values. However, these values were generally superior for the automated onset detection methodology. Additionally, the consistency of relative RFD values declines following 50% MVC and therefore should be evaluated with caution.  相似文献   

6.
The influence of the contractile tension rise time on isokinetic force-angle records has been inferred from static force-time curves but has not been experimentally determined. The purpose of this study is thus to describe the influence of the contractile rise time on the force-angle curves produced during maximal voluntary, acceleration controlled, isokinetic plantarflexions at 30 degrees/s. Since we could not measure directly the period of force development unbiased by changes in muscle length during the movements, we devised an experimental strategy which allowed the computation of the dynamic force-time curve. Thus in five normal men, we first recorded force-angle curves produced during maximal voluntary plantarflexion movements preceded by maximal static pre-loading (D:-10 degrees Max) in order to eliminate the period of tension development from the force-angle record. Next, we recorded force-angle curves produced during maximal voluntary contractions initiated from two different starting angles without pre-loading (D:-10 degrees Min and D:0 degrees Min) to include the period of tension rise. The dynamic force-time curve was computed by correcting these force-angle curves (D:-10 degrees Min and D:0 degrees Min) for the hypothetical loss in force due to muscle shortening. We compared the relative (to remove the effects of force magnitude) computed dynamic force-time curves with relative static force-time curves measured at three different angles. We found the shape and several other parameters of all three static and both computed dynamic force-time curves to be similar (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The use of elastic bands in resistance training has been reported to be effective in increasing performance-related parameters such as power, rate of force development (RFD), and velocity. The purpose of this study was to assess the following measures during the free-weight back squat exercise with and without elastic bands: peak and mean velocity in the eccentric and concentric phases (PV-E, PV-C, MV-E, MV-C), peak force (PF), peak power in the concentric phase, and RFD immediately before and after the zero-velocity point and in the concentric phase (RFDC). Twenty trained male volunteers (age = 26.0 ± 4.4 years) performed 3 sets of 3 repetitions of squats (at 55% one repetition maximum [1RM]) on 2 separate days: 1 day without bands and the other with bands in a randomized order. The added band force equaled 20% of the subjects' 55% 1RM. Two independent force platforms collected ground reaction force data, and a 9-camera motion capture system was used for displacement measurements. The results showed that PV-E and RFDC were significantly (p < 0.05) greater with the use of bands, whereas PV-C and MV-C were greater without bands. There were no differences in any other variables. These results indicate that there may be benefits to performing squats with elastic bands in terms of RFD. Practitioners concerned with improving RFD may want to consider incorporating this easily implemented training variation.  相似文献   

8.
Comfort, P, Allen, M, and Graham-Smith, P. Kinetic comparisons during variations of the power clean. J Strength Cond Res 25(12): 3269-3273, 2011-The aim of this investigation was to determine the differences in peak power, peak vertical ground reaction forces, and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 16; age 22 ± 1.58 years; height 182.25 ± 2.81 cm; body mass 98.65 ± 7.52 kg) performed 1 set of 3 repetitions of the power clean, hang power clean, midthigh power clean, or midthigh clean pull, using 60% of 1 repetition maximum power clean, in a randomized order, while standing on a force platform. One-way analysis of variance with Bonferroni post hoc analysis revealed a significantly (p < 0.001) greater peak power output during the midthigh power clean (3,565.7 ± 410.6 W) and the midthigh clean pull (3,686.8 ± 386.5 W) compared with both the power clean (2,591.2 ± 645.5 W) and the hang power clean (3,183.6 ± 309.1 W), along with a significantly (p < 0.001) greater peak Fz during the midthigh power clean (2,813.8 ± 200.5 N) and the midthigh clean pull (2,901.3 ± 226.1 N) compared with both the power clean (2,264.1 ± 199.6 N) and the hang power clean (2,479.3 ± 267.6 N). The midthigh power clean (15,049.8 ± 4,415.7 N·s) and the midthigh clean pull (15,623.6 ± 3,114.4 N·s) also demonstrated significantly (p < 0.001) greater instantaneous RFD when compared with both the power clean (8,657.9 ± 2,746.6 N·s) and the hang power clean (10,314.4 ± 4,238.2 N·s). From the findings of this study, when training to maximize power, Fz, and RFD, the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.  相似文献   

9.
Athletes commonly use elastic bands as a training method to increase strength and performance. The purpose of this study was to investigate the effect of elastic bands on peak force (PF), peak power (PP), and peak rate of force development (RFD) during the back-squat exercise (BSE). Ten recreationally resistance-trained subjects (4 women, 6 men, mean age 21.3 +/- 1.5 years) were tested for their 1 repetition maximum (1RM) in the BSE (mean 117.6 +/- 48.2 kg) on a Smith machine. Testing was performed on 2 separate days, with 2 sets of 3 repetitions being performed for each condition. Testing was conducted at 60% and 85% of 1RM with and without using elastic bands. In addition, 2 elastic band loading conditions were tested (B1 and B2) at each of the 2 resistances. No bands (NB) represents where all of the resistance was acquired from free-weights. B1 represents where approximately 80% of the resistance was provided by free-weights, and approximately 20% was provided by bands. B2 represents where approximately 65% of the resistance was provided by free-weights, and approximately 35% was provided from bands. The subjects completed the BSE under each condition, whereas PF, PP, and RFD was recorded using a force platform. There was a significant (p < 0.05) increase in PF between NB-85 and B2-85 of 16%. Between B1-85 and B2-85, PF was increased significantly by 5% (p < 0.05). There was a significant (p < 0.05) increase in PP between NB-85 and B2-85 of 24%. No significant differences were observed in RFD during the 85% conditions or for any of the measured variables during the 60% conditions (p < 0.05). The results suggest that the use of elastic bands in conjunction with free weights can significantly increase PF and PP during the BSE over free-weight resistance alone under certain loading conditions. The greatest differences are observed during the higher loading conditions, with the B1-85 condition appearing to be optimal for athletic performance of the ones we tested. The strength training professional could use variable resistance training (VRT) to increase PF and PP more than the traditional BSE can. VRT could also be used to train these 2 performance characteristics together, which might be especially useful in season, when weight-room training volume can sometimes be limited.  相似文献   

10.
The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.  相似文献   

11.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

12.
The ability to develop high levels of muscular power is considered a fundamental component for many different sporting activities; however, the load that elicits peak power still remains controversial. The primary aim of this study was to determine at which load peak power output occurs during the midthigh clean pull. Sixteen participants (age 21.5 ± 2.4 years; height 173.86 ± 7.98 cm; body mass 70.85 ± 11.67 kg) performed midthigh clean pulls at intensities of 40, 60, 80, 100, 120, and 140% of 1 repetition maximum (1RM) power clean in a randomized and balanced order using a force plate and linear position transducer to assess velocity, displacement, peak power, peak force (Fz), impulse, and rate of force development (RFD). Significantly greater Fz occurred at a load of 140% (2,778.65 ± 151.58 N, p < 0.001), impulse within 100, 200, and 300 milliseconds at a load of 140% 1RM (196.85 ± 76.56, 415.75 ± 157.56, and 647.86 ± 252.43 N·s, p < 0.023, respectively), RFD at a load of 120% (26,224.23 ± 2,461.61 N·s, p = 0.004), whereas peak velocity (1.693 ± 0.042 m·s, p < 0.001) and peak power (3,712.82 ± 254.38 W, p < 0.001) occurred at 40% 1RM. Greatest total impulse (1,129.86 ± 534.86 N·s) was achieved at 140% 1RM, which was significantly greater (p < 0.03) than at all loads except the 120% 1RM condition. Results indicate that increased loading results in significant (p < 0.001) decreases in peak power and peak velocity during the midthigh clean pull. Moreover, if maximizing force production is the goal, then training at a higher load may be advantageous, with peak Fz occurring at 140% 1RM.  相似文献   

13.
The objective of this study was to investigate the influence of active static stretching on the maximal isometric muscle strength (maximal voluntary contraction [MVC]) and rate of force development (RFD) determined within time intervals of 30, 50, 100, and 200 milliseconds relative to the onset of muscle contraction. Fifteen men (aged 21.3 ± 2.4 years) were submitted on different days to the following tests: (a) familiarization session to the isokinetic dynamometer; (b) 2 maximal isometric contractions for knee extensors in the isokinetic dynamometer to determine MVC and RFD (control); and (c) 2 active static stretching exercises for the dominant leg extensors (10 × 30 seconds for each exercise with a 20-second rest interval between bouts). After stretching, the isokinetic test was repeated (poststretching). Conditions 2 and 3 were performed in random order. The RFD was considered as the mean slope of the moment-time curve at time intervals of 0-30, 0-50, 0-100; 0-150; and 0200 milliseconds relative to the onset of muscle contraction. The MVC was reduced after stretching (285 ± 59 vs. 271 ± 56 N · m, p < 0.01). The RFD at intervals of 0-30, 0-50, and 0-100 milliseconds was unchanged after stretching (p > 0.05). However, the RFD measured at intervals of 0-150 and 0-200 milliseconds was significantly lower after stretching (p < 0.01). It can be concluded that explosive muscular actions of a very short duration (<100 milliseconds) seem less affected by active static stretching when compared with actions using maximal muscle strength.  相似文献   

14.
The purpose of this research project was to evaluate the methodology of an iso-inertial force-velocity assessment utilizing a range of loads and a group of high-performance athletes. A total of 26 subjects (19.8 +/- 2.6 years, 196.3 +/- 9.6 cm, 88.6 +/- 8.9 kg) participated in this study. Interday reliability of various force-time measures obtained during the performance of countermovement jumps with a range of loads was examined, followed by a validity assessment of the various measures' ability to discriminate among performance levels, while the ability of the test protocol to detect training-induced changes was assessed by comparing results before and after an intensive 12-week training period. Force and velocity variables were observed to be reliable (intraclass correlation coefficient 0.74-0.99). Large effect size statistic (ES > 0.50) differences among player groups were observed for peak power (1.36-2.25), relative peak power (1.57-2.42), and peak force (0.74-0.95). Significant (p < 0.05) and large (ES > 0.50) improvements were observed in the kinetic values after the intensive training period. The results of this study indicate that the incremental load power profile is an acceptably reliable, valid, and sensitive method of assessing force and power capabilities of the leg extensors in high-performance and elite volleyball players.  相似文献   

15.
This study investigated the effects of ballistic resistance training and strength training on muscle fiber composition, peak force (PF), maximal strength, and peak power (PP). Fourteen males (age = 21.3 +/- 2.9, body mass = 77.8 +/- 10.1 kg) with 3 months of resistance training experience completed the study. Subjects were tested pre and post for their squat one-repetition maximum (1RM) and PP in the jump squat (JS). Peak force and rate of force development (RFD) were tested during an isometric midthigh pull. Muscle biopsies were obtained from the vastus lateralis for analysis of muscle fiber type expression. Subjects were matched for strength and then randomly selected into either training (T) or control (C) groups. Group T performed 8 weeks of JS training using a periodized program with loading between 26 and 48% of 1RM, 3 days per week. Group T showed significant improvement in PP from 4088.9 +/- 520.6 to 5737.6 +/- 651.8 W. Rate of force development improved significantly in group T from 12687.5 +/- 4644.0 to 25343.8 +/- 12614.4 N x s(-1). PV improved significantly from 1.59 +/- 0.41 to 2.11 +/- 0.75 m x s(-1). No changes occurred in PF, 1RM, or muscle fiber type expression for group T. No changes occurred in any variables in group C. The results of this study indicate that using ballistic resistance exercise is an effective method for increasing PP and RFD independently of changes in maximum strength (1RM, PF), and those increases are a result of factors other than changes in muscle fiber type expression.  相似文献   

16.
Previous research suggests high impact forces generated during landings contribute to noncontact anterior cruciate ligament (ACL) injuries. In women, neuromuscular differences appear to modify the ability to dissipate landing forces when compared to men. This study examined peak vertical impact forces (F(p)) and rate of force development (RFD) following a 9-week, low-intensity (simple jump-landing-jump tasks) and volume (number of foot contacts per workout) plyometric-based knee ligament injury prevention (KLIP) program. Female subjects were randomly assigned into control (n = 14) and treatment (n = 14) groups. Treatment subjects attended KLIP sessions twice a week for 9 weeks, and control subjects received no intervention. Ground reaction forces (F(p) and RFD) generated during a step-land protocol were assessed at study onset and termination. Significant reductions in F(p) (p = 0.0004) and RFD (p = 0.0205) were observed in the treatment group. Our results indicate that 9 weeks of KLIP training altered landing strategies in women to lower F(p) and RFD. These changes are considered conducive to a reduced risk of knee injury while landing.  相似文献   

17.
The study assessed the effect of current activation potentiation by evaluating jaw clenching and its effect on the rate of force development (RFD), time to peak force (TTPF), and peak force (PF) during the countermovement jump. Fourteen subjects performed the countermovement jump on a force platform while maximally clenching their jaw on a dental vinyl mouthguard (JAW) as well as without clenching their jaw by jumping with an open mouth (NON-JAW). Results reveal that the RFD was 19.5% greater in the JAW compared with the NON-JAW condition (p < 0.05). The TTPF was 20.15% less in the JAW compared with the NON-JAW condition (p < 0.05). There were no significant differences (p = 0.60) in PF between the JAW and NON-JAW conditions. These findings indicate that concurrent activation potentiation is manifested through jaw clenching during the countermovement jump. As a result, athletes may employ this strategy of maximally clenching their jaws to gain an ergogenic advantage during the countermovement jump.  相似文献   

18.
The aim of this study was to compare the pattern of force production and center of mass kinematics in maximal vertical jump performance between power athletes, recreational bodybuilders, and physically active subjects. Twenty-seven healthy male subjects (age: 24.5 +/- 4.3 years, height: 178.7 +/- 15.2 cm, and weight: 81.9 +/- 12.7 kg) with distinct training backgrounds were divided into 3 groups: power track athletes (PT, n = 10) with international experience, recreational bodybuilders (BB, n = 7) with at least 2 years of training experience, and physically active subjects (PA, n = 10). Subjects performed a 1 repetition maximum (1RM) leg press test and 5 countermovement jumps with no instructions regarding jumping technique. The power-trained group jumped significantly higher (p < 0.05) than the BB and PA groups (0.40 +/- 0.05, 0.31 +/- 0.04, and 0.30 +/- 0.05, respectively). The difference in jumping height was not produced by higher rates of force development (RFD) and shorter center of mass (CM) displacement. Instead, the PT group had greater CM excursion (p < 0.05) than the other groups. The PT and BB groups had a high correlation between jumping height and 1RM test (r = 0.93 and r = 0.89, p < 0.05, respectively). In conclusion, maximum strength seems to be important for jumping height, but RFD does not seem relevant to achieve maximum jumping heights. High RFD jumps should be performed during training only when sport skills have a time constraint for force application.  相似文献   

19.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

20.
Seven male elite strength-trained athletes (SA) from different weight categories, six elite sprinters (SPA) and seven elite endurance-trained athletes (EA) volunteered as subjects for examination of their muscle cross-sectional area (CSA), maximal voluntary isometric force, force-time and relaxation-time characteristics of the leg extensor muscles. The SA group demonstrated slightly greater CSA and maximal absolute strength than the SPA group, while the EA group demonstrated the smallest values both in CSA and especially in maximal strength (p less than 0.05). When the maximal forces were related to CSA of the muscles, the mean value for the SA group of 60.8 +/- 10.0 N.cm-2 remained slightly greater than that recorded in the SPA group 55.0 +/- 3.1 N.cm-2 and significantly greater (p less than 0.05) than that recorded in the EA group 49.3 +/- 4.0 N.cm-2. The mean value in the SPA was also significantly greater (p less than 0.05) than that of the EA group. The isometric force-time curves differed between the groups (p less than 0.05-0.01) so that the times taken to produce the same absolute force were the shortest in the SPA group and the longest in the EA group. With force expressed as a percentage of the maximum, the force-time curves showed that the SPA group demonstrated still shorter times to a given value (p less than 0.05), especially at the lower force levels, than the other two groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号