首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the long-term influence of paralysis on muscle phenotypic mRNA and protein expression, the effects of spinal cord transection (ST) on myosin heavy chain (MyHC) isoform mRNA and protein levels in the soleus and medial gastrocnemius (MG) muscles of rats were analyzed. Control soleus contained predominantly MyHC-I with low amounts of MyHC-IIa and IIx mRNAs. After ST, MyHC-I mRNA decreased to approximately 15%, MyHC-IIa was increased by 75-200%, and MyHC-IIx was elevated by 8-10x. Low level expression of MyHC-IIb was observed post-ST, suggesting that reduced activity is not a primary stimulus for MyHC-IIb expression. Adaptations in mRNA preceded protein adaptations in the soleus. Although MyHC-I protein in the MG was reduced post-ST, no other consistent changes occurred. The relative lack of adaptation to ST by the MG suggests that the reduced activity and load bearing encountered by the MG were insufficient to induce a change in muscle phenotype.  相似文献   

2.
Myosin heavy chain expression in embryonic cardiac cell cultures   总被引:4,自引:0,他引:4  
Chick embryonic heart cell isolates and monolayer cultures were prepared from atria and ventricles at selected stages of cardiac development. The cardiac myocytes were assayed for myosin heavy chain (MHC) content using monoclonal antibodies (McAbs) specific in the heart for atrial (B-1), ventricular (ALD-19), or conductive system (ALD-58) isoforms. Using immunofluorescence microscopy or radioimmunoassay, MHC accumulation was measured before plating and at 48 hr or 7 days in culture. Reproducible changes in MHC antigenicity were observed by 7 days in both atrial and ventricular cultures. The changes were stage dependent and tissue specific but generally resulted in a decreased reactivity with the tissue specific MHC McAbs. In addition, the isoform recognized by ALD-58, characteristic of the conductive system cells in vivo, was never present in cultured myocytes. These results indicate that MHC isoforms produced in vivo may be replaced in monolayer cultures by an isoform(s) not recognized by our tissue specific MHC McAbs. This suggests that the intrinsic program of cardiac myogenesis, within cardiac myocytes, may not be sufficient to establish and maintain differential expression of tissue specific MHC in monolayer cell culture.  相似文献   

3.
4.
BACKGROUND: The most common cause of chronic heart failure in the US is secondary or primary dilated cardiomyopathy (DCM). The DCM phenotype exhibits changes in the expression of genes that regulate contractile function and pathologic hypertrophy. However, it is unclear if any of these alterations in gene expression are disease producing or modifying. MATERIALS AND METHODS: One approach to providing evidence for cause-effect of a disease-influencing gene is to quantitatively compare changes in phenotype to changes in gene expression by employing serial measurements in a longitudinal experimental design. We investigated the quantitative relationships between changes in gene expression and phenotype n 47 patients with idiopathic DCM. In endomyocardial biopsies at baseline and 6 months later, we measured mRNA expression of genes regulating contractile function (beta-adrenergic receptors, sarcoplasmic reticulum Ca(2) + ATPase, and alpha- and beta-myosin heavy chain isoforms) or associated with pathologic hypertrophy (beta-myosin heavy chain and atrial natriuretic peptide), plus beta-adrenergic receptor protein expression. Left ventricular phenotype was assessed by radionuclide ejection fraction. RESULTS: Improvement in DCM phenotype was directly related to a coordinate increase in alpha- and a decrease in beta-myosin heavy chain mRNA expression. In contrast, modification of phenotype was unrelated to changes in the expression of beta(1)- or beta(2)-adrenergic receptor mRNA or protein, or to the mRNA expression of sarcoplasmic reticulum Ca(2) + ATPase and atrial natriuretic peptide. CONCLUSION: We conclude that in human DCM, phenotypic modification is selectively associated with myosin heavy chain isoform changes. These data support the hypothesis that myosin heavy chain isoform changes contribute to disease progression in human DCM.  相似文献   

5.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

6.
Nucleotide sequences which included the full coding region for three types of myosin heavy chain (MyHC) isoforms were determined from equine skeletal muscles. The deduced amino acid sequences were 1937, 1938, and 1935 residues for the MyHC-2a, -2x, and -slow, respectively. No MyHC-2b isoform was amplified from the equine muscle cDNA except for one pseudogene fragment. One nucleotide was inserted in the coding region of the equine pseudogene product, a minute amount of which was expressed in the skeletal muscle. The 596 bp sequence of the equine MyHC pseudogene was categorized into the MyHC-2b genes on the phylogenetic tree of the mammalian MyHC genes. These results suggest that an ancestral MyHC-2b gene had lost its function and changed to a pseudogene during the course of horse history. The MyHC genes in some ungulates were analyzed through the PCR amplifications using the MyHC isoform-specific primers to confirm the presence of the MyHC-2b and -2x genes. The exon coding the 3' untranslated region of the MyHC-2x was successfully amplified from the all ungulates examined; however, that of the MyHC-2b gene was amplified only from horses, pigs and lesser mouse deer. The PCR analyses from rhinoceros, sika deer, moose, giraffes, water buffalo, bovine, Japanese serow and sheep genes implied the absence of the MyHC-2b-specific sequence in their genomes. These results suggest that the MyHC-2b gene independently lost its function in some ungulate species.  相似文献   

7.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

8.
Myosin heavy chain (MHC) isoforms alpha and beta have intrinsically different ATP hydrolysis activities (ATPase) and therefore cross-bridge cycling rates in solution. There is considerable evidence of altered MHC expression in rodent cardiac disease models; however, the effect of incremental beta-MHC expression over a wide range on the rate of high-strain, isometric cross-bridge cycling is yet to be ascertained. We treated male rats with 6-propyl-2-thiouracil (PTU; 0.8 g/l in drinking water) for short intervals (6, 11, 16, and 21 days) to generate cardiac MHC patterns in transition from predominantly alpha-MHC to predominantly beta-MHC. Steady-state calcium-dependent tension development and tension-dependent ATP consumption (tension cost; proportional to cross-bridge cycling) were measured in chemically permeabilized (skinned) right ventricular muscles at 20 degrees C. To assess dynamic cross-bridge cycling kinetics, the rate of force redevelopment (ktr) was determined after rapid release-restretch of fully activated muscles. MHC isoform content in each experimental muscle was measured by SDS-PAGE and densitometry. alpha-MHC content decreased significantly and progressively with length of PTU treatment [68 +/- 5%, 58 +/- 4%, 37 +/- 4%, and 27 +/- 6% for 6, 11, 16, and 21 days, respectively; P < 0.001 (ANOVA)]. Tension cost decreased, linearly, with decreased alpha-MHC content [6.7 +/- 0.4, 5.6 +/- 0.5, 4.0 +/- 0.4, and 3.9 +/- 0.3 ATPase/tension for 6, 11, 16, and 21 days, respectively; P < 0.001 (ANOVA)]. Likewise, ktr was significantly and progressively depressed with length of PTU treatment [11.1 +/- 0.6, 9.1 +/- 0.5, 8.2 +/- 0.7, and 6.2 +/- 0.3 s(-1) for 6, 11, 16, and 21 days, respectively; P < 0.05 (ANOVA)] Thus cross-bridge cycling, under high strain, for alpha-MHC is three times higher than for beta-MHC. Furthermore, under isometric conditions, alpha-MHC and beta-MHC cross bridges hydrolyze ATP independently of one another.  相似文献   

9.
Sections of chicken tibialis anterior and extensor digitorium longus muscles were incubated with monoclonal antibodies against myosin heavy chains (MHC). Ventricular myosin was present in developing secondary intrafusal myotubes when they were first recognized at embryonic days (E) 13–14, and in developing extrafusal fibers prior to that date. The reaction in intrafusal fibers began to fade at E17, and in 2-week-old postnatal and older muscles the isoform was no longer recognized. Only those intrafusal fibers which also reacted with a monoclonal antibody against atrial and slow myosin contained ventricular MHC. Intrafusal myotubes which developed into fast fibers did not express the isoform. Hence, based on the presence or absence of ventricular MHC, two lineages of intrafusal fiber are evident early in development. Strong immunostaining for ventricular MHC was observed in primary extrafusal myotubes at E10, but the isoform was already downregulated at E14, when secondary intrafusal myotubes were still forming and expressed ventricular MHC. Only light to moderate and transient immunostaining was observed in coexisting secondary extrafusal myotubes, most of which developed into fast fibers. Thus at the time when nascent muscle spindles are first recognized, differences in MHC profiles already exist between prospective intrafusal and extrafusal fibers. If intrafusal fibers stem from a pool of primordial muscle cells, which is common to intrafusal and extrafusal myotubes, they diverged from it some time prior to E13.This paper is dedicated to Prof. D. Pette, Konstanz, on the occasion of his 60th birthday  相似文献   

10.
已往的研究对于实验室应用的各种啮齿类动物,如大鼠和小鼠骨骼肌蛋白表达的特性已有报道.然而,至今不清楚其它啮齿类动物如野生鼠骨骼肌蛋白的表达或性双态性的特征,而这些野生鼠的行为学、形态学及生理学特点均已有报道.已知骨骼肌的肌球蛋白重链(MHC)成分与其功能特性有关.我们研究了草原田鼠的肱三头肌、胫骨前肌、腓肠肌和比目鱼肌MHC蛋白表达的性别特性.应用SDS聚丙烯酰胺凝胶电泳法测定MHC Ⅰ型、Ⅱa型、Ⅱd/x和Ⅱb型的蛋白表达相对含量.结果表明:与雌鼠相比,雄鼠的比目鱼肌湿重较大,胫骨前肌的MHC Ⅱa蛋白量表达较高.未见骨骼肌重量及MHC蛋白表达含量在雌雄鼠间的性别差异.血中睾酮的浓度差异可能不影响外周骨骼肌蛋白的表达特性.然而,与过去在大鼠、兔和小鼠中的已报道的结果相比,草原田鼠骨骼肌MHC的表达显示了更多异质性.推测这可能与草原田鼠和其它小型哺乳类动物生存的自然环境和功能需要有关.  相似文献   

11.
The cytoskeleton undergoes dramatic changes during apoptosis and many cytoskeletal proteins are known to be degraded during this process. The number of proteases found to be involved in apoptosis is growing but the role of the proteolysis they cause remains poorly understood. This report describes for the first time that myosin heavy chain is cleaved in aortic endothelial cell apoptosis induced either by tumour necrosis factor-alpha or okadaic acid. The cleavage was specific since a well-defined major 97 kDa fragment of myosin heavy chain was produced. The intermediate filament component vimentin was also cleaved into well-defined fragments (31, 28 and 23 kDa). Kinetic studies showed that proteolysis occurred concomitantly with the morphological changes associated with apoptosis, i.e. cellular condensation and fragmentation in apoptotic bodies. These data suggest that the degradation of myosin and vimentin could be involved in the execution of the morphological alterations observed during apoptotic cell death.  相似文献   

12.
The goals of this study were to measure the relative levels of the alpha- and beta-isoforms of myosin heavy chain (MHC-alpha and MHC-beta, respectively) in multiple, specific regions of the adult rat heart and to determine whether age-dependent changes in isoform levels in different regions are uniform. Relative amounts of MHC-alpha and MHC-beta were determined in right and left atria and left ventricular (LV) Purkinje fibers (PF), papillary muscles, trabeculae, and endo-, mid-, and epicardial regions at 2, 5, 10, 16, and 21 mo. PFs contained substantial amounts of myosin and were striated and capable of generating force and shortening on activation. Levels of MHC-beta increased in all LV compartments with age, especially between 2 and 5 mo. There was more MHC-beta in PFs than other LV sites. There were regional differences in the level of MHC-beta throughout the LV at all ages, and the rates of change within regions differed. Ca(2+)-activated tension in PFs and trabeculae was compared at 2 and 22 mo. PF tension was less than trabecula tension, and this difference may be explained by differences in MHC content. V(max) and tension-generating ability in PFs decreased with age. Maximal tension generated by trabeculae did not change during aging. A large proportion of the increase in the level of MHC-beta that is normally associated with aging occurs at a relatively early age in rat LV. PFs, with their small diameters and short diffusion distance, should be considered for skinned multicellular myocardial studies.  相似文献   

13.
We have previously demonstrated that the relative expression of myosin heavy chain-beta (MHC-β) in both ventricles of rats exposed to long-term hypobaric hypoxia correlated significantly with the relative ventricular mass. In the present study, we investigated whether an increased expression of MHC-β was accompanied by a reduction in cyclic AMP (cAMP) activity in hypoxia-induced hypertrophied right ventricle (RV). We used male Wistar–Kyoto rats born and raised at simulated altitudes (2200 m: H2 group or 4000 m: H4 group) compared to age-matched sea level controls (SC group). There were no significant differences between the groups in basal and forskolin-stimulated adenylyl cyclase (AC) activities. The basal and IBMX-inhibited phosphodiesterase (PDE) activities were slightly higher in both hypoxic groups (p>0.05), except that the H2 group had a higher basal PDE activity than the SC group (p<0.05). The AC/PDE activity ratios were significantly decreased in both hypoxic groups (p<0.05), suggesting that low concentrations of cellular cAMP were maintained in the RV under hypoxic conditions. However, there were no correlations between MHC-β expression and either AC activity, PDE activity, or AC/PDE activity ratio. These results provided evidence against the causal role for cAMP concentration in the expression of MHC-β associated with hypoxia-induced ventricular hypertrophy.  相似文献   

14.
15.
16.
Summary In the nematode, Caenorhabditis elegans, the body wall muscles contain paramyosin and two different types of myosin heavy chain, MHC A and MHC B. In mutants that do not express MHC B or that express defective paramyosin, muscle structure is disrupted and movement is impaired. Second site mutations in the sup-3 locus partially reverse these defects and are correlated with a 2- to 3-fold increase in the accumulation of the MHC A isoform. The sup-3 mutations occur at a high frequency (10–4) after ethyl methanesulfonate (EMS) mutagenesis. This is comparable to the average EMS-induced mutation rate per gene in C. elegans. In this paper we show that the sup-3 mutation is an amplification of the structural gene for the MHC A protein, myo-3. We employed genomic Southern hybridization with MHC gene-specific probes in order to measure the copy number of the myo-3 gene relative to that of the MHC B gene, unc-54. We have identified the putative amplification junctions for these sup-3 alleles using a set of cosmid clones which encompass myo-3 region. Although it has been suggested that gene amplification plays an important role in evolution, there are few known cases of gene amplification in the germ line cells of multicellular organisms. The results shown here provide a clear example of a heritable gene amplification event that occurs at a high frequency in the germ line. Similar events may thus represent the initial event in the evolution of new function and in the formation of multigene families.  相似文献   

17.
Myosin heavy chain isoforms (MHC) of adult skeletal muscles are codified by four genes named: slow, or type 1, and fast types 2A, 2X and 2B. The slow, 2A and 2X isoforms have been found expressed in all mammalian species studied so far whereas there is a large inter-species variability in the expression of MHC-2B. In this study histochemistry (m-ATPase), immunohistochemistry with the use of specific monoclonal antibodies and RT-PCR were combined together to assess whether the MHC-2B gene is expressed in bovine muscles. ATPase staining and RT-PCR experiments showed that three MHC isoforms (1, 2A, 2X) were expressed in trunk and limb muscles. Slow or type 1 expression was confirmed using a specific antibody (BA-F8) whereas the detection of fast MHC isoforms were validate by means of BF-35 antibody although not by the SC-71 antibody. MHC-2B was absent in limb and trunk muscles, but was present in specialized eye muscles (rectus lateralis and retractor bulbi) as consistently showed by RT-PCR and reactivity with a specific antibody (BF-F3). Interestingly, a cardiac isoform, MHC-a-cardiac was found to be expressed not only in extraocular muscles but also in masticatory muscles as masseter.  相似文献   

18.
The patterns of myosin heavy chain (MyHC) isoform expression in the embryo and in the adult mouse are reasonably well characterized and quite distinct. However, little is known about the transition between these two states, which involves major decreases and increases in the expression of several MyHC genes. In the present study, the expression of seven sarcomeric MyHCs was analyzed in the hindlimb muscles of wild-type mice and in mice null for the MyHC IIb or IId/x genes at several time points from 1 day of postnatal life (dpn) to 20 dpn. In early postnatal life, the developmental isoforms (embryonic and perinatal) comprise >90% of the total MyHC expression, while three adult fast isoforms (IIa, IIb, and IId) comprise <1% of the total MyHC protein. However, between 5 and 20 dpn their expression increases to comprise >90% of the total MyHC. Expression of each of the three adult fast isoforms occurs in a spatially and temporally distinct manner. We also show that alpha MyHC, which is almost exclusively expressed in the heart, is expressed in scattered fibers in all hindlimb muscles during postnatal development. Surprisingly, the timing and localization of expression of the MyHC isoforms is unchanged in IIb and IId/x null mice, although the magnitude of expression is altered for some isoforms. Together these data provide a comprehensive overview of the postnatal expression pattern of the sarcomeric MyHC isoforms in the mouse hindlimb.  相似文献   

19.
20.
The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca(2+) activation (P(pCa4.5)). MHC expression was determined after mechanical measurements using SDS-PAGE. Both alpha-MHC and beta-MHC myocytes generated similar maximal Ca(2+)-activated force, but alpha-MHC myocytes shortened faster at all loads and generated approximately 170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (F(opt)) was greater in alpha-MHC myocytes. F(opt) was 0.31 +/- 0.03 P(pCa4.5) and 0.20 +/- 0.06 P(pCa4.5) for alpha-MHC and beta-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号