首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this study was to compare the magnitude and duration of excess postexercise oxygen consumption (EPOC) after 2 exercise sessions with different exercise mode orders, resistance followed by aerobic exercise (R-A); aerobic by resistance exercise (A-R). Seven young men (19.6 ± 1.4 years) randomly underwent the 2 sessions. Aerobic exercise was performed on a treadmill for 30 minutes (80-85% of reserve heart rate). Resistance exercise consisted of 3 sets of 10 repetition maximum on 5 exercises. Previous to the exercise sessions, V(O2), heart rate, V(CO2), and respiratory exchange rate (RER) were measured for 15 minutes and again during recovery from exercise for 60 minutes. The EPOC magnitude was not significantly different between R-A (5.17 ± 2.26 L) and A-R (5.23 ± 2.48 L). Throughout the recovery period (60 minutes), V(O2) and HR values were significantly higher than those observed in the pre-exercise period (p < 0.05) in both exercise sessions. In the first 10 minutes of recovery, V(CO2) and RER declined to pre-exercise levels. Moreover, V(CO2) and RER values in A-R were significantly lower than in R-A. In conclusion, the main result of this study suggests that exercise mode order does not affect the EPOC magnitude and duration. Therefore, it is not necessary for an individual to consider the EPOC when making the decision as to which exercise mode is better to start a training session.  相似文献   

2.
The present study was conducted to examine (a) whether there is an association between maximal oxygen uptake (Vo(2)max) and reduction in postexercise heart rate (HR) and blood lactate concentrations ([La]) following resistance exercise and (b) how intensity and Volume of resistance exercise affect postexercise Vo(2). Eleven regularly weight-trained males (20.8 +/- 1.3 years; 96.2 +/- 14.4 kg, 182.4 +/- 7.3 cm) underwent 4 sets of squat exercise on 3 separate occasions that differed in both exercise intensity and volume. During each testing session, subjects performed either 15 repetitions.set(-1) at 60% of 1 repetition maximum (1RM) (L), 10 repetitions.set(-1) at 75% of 1RM (M), or 4 repetitions.set(-1) at 90% of 1RM (H). During each exercise, Vo(2) and HR were measured before (PRE), immediately post (IP), and at 10 (10P), 20 (20P) 30 (30P), and 40 (40P) minutes postexercise. The [La] was measured at PRE, IP, 20P, and 40P. Decrease in HR (DeltaHR) was determined by subtracting HR at 10P from that at IP, whereas decrease in [La] (Delta[La]) was computed by subtracting [La] at 20P from that at IP. A significant correlation (p < 0.05) was found between Vo(2)max and DeltaHR in all exercise conditions. A significant correlation (p < 0.05) was also found between Vo(2)max and Delta[La] in L and M but not in H. The Vo(2) was higher (p < 0.05) during M than H at IP and 10P, while no difference was seen between L and M and between L and H. These results indicate that those with greater aerobic capacity tend to have a greater reduction in HR and [La] during recovery from resistance exercise. In addition, an exercise routine performed at low to moderate intensity coupled with a moderate to high exercise volume is most effective in maximizing caloric expenditure following resistance exercise.  相似文献   

3.
Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit "Free Run" program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min(-1)) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min(-1)). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit "Free Run" with a self-selected intensity. We concluded that Nintendo Wii Fit "Free Run" may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.  相似文献   

4.
The purpose of this study was to compare nutritionally enriched JavaFit coffee (JF) to commercially available decaffeinated coffee (P) with regard to impact on endurance and anaerobic power performance in a physically active, college-aged population. Ten subjects (8 men, 2 women) performed two 30-second Wingate anaerobic power tests and 2 cycle ergometer tests (75% VO2 max) to exhaustion. Mean VO2 was measured during each endurance exercise protocol. Excess postexercise oxygen consumption (EPOC) and respiratory exchange ratio (RER) were recorded for 30 minutes following all exercise sessions. Area under the curve analysis was used to compare EPOC between JF and P for all exercise sessions. No differences were seen between JF and P in any of the power performance measures. However, time to exhaustion was significantly (p = 0.05) higher in JF (35.3 +/- 15.2 minutes) compared with P (27.3 +/- 10.7 minutes). No difference between JF and P were seen in EPOC in either the aerobic or anaerobic exercise sessions. A significant (p < 0.05) difference in average 30-minute postanaerobic power exercise RER was seen between JF (0.87 +/- 0.04) and P (0.83 +/- 0.03), but not following endurance exercise. A nutritionally-enriched coffee beverage appears to enhance time to exhaustion during aerobic exercise, but does not provide an ergogenic benefit during anaerobic exercise.  相似文献   

5.
Between-set rest intervals (RIs) may influence accumulated fatigue, work volume, and therefore oxygen uptake (VO2) and energy expenditure (EE) during resistance training. The study investigated the effects of different RIs on VO2 and EE in resistance exercises performed with multiple sets and recruiting large and small-muscle mass. Ten healthy men performed 4 randomized protocols (5 sets of 10 repetitions with 15 repetition maximum workloads in either horizontal leg press [LP] or chest fly [CF] with an RI of 1 and 3 minutes). The VO2 was measured at rest, within sets, and during 90-minute postexercise recovery (excess postexercise oxygen consumption [EPOC]). The EE was estimated from VO2net (total VO2 - rest VO2). The VO2 increased in all protocols, being higher within the exercises and during EPOC in the LP than in the CF regardless of the RI. The 1-minute RI induced higher accumulated VO2 during LP (p < 0.05) but not during CF. The EPOC lasted approximately 40 minutes after LP1, LP3, and CF1, being longer than after CF3 (20 minutes, p < 0.05). Total EE was mainly influenced by muscle mass (p < 0.001) (LP3 = 91.1 ± 13.5 kcal ~ LP1 = 88.7 ± 18.4 kcal > CF1 = 50.3 ± 14.4 kcal ~ CF3 = 54.1 ± 12.0 kcal). In conclusion, total VO2 was always higher in LP than in CF. Shortening RI enhanced the accumulated fatigue throughout sets only in LP and increased VO2 in the initial few minutes of EPOC, whereas it did not influence total VO2 and EE in both exercises. Therefore, (a) the role of RI in preventing early fatigue seems to be more important when large-muscle groups are recruited; (b) resistance exercises recruiting large-muscle mass induce higher EE because of a greater EPOC magnitude.  相似文献   

6.
The effects of exercise on energy substrate metabolism persist into the postexercise recovery period. We sought to derive bicarbonate retention factors (k) to correct for carbon tracer oxidized, but retained from pulmonary excretion before, during, and after exercise. Ten men and nine women received a primed-continuous infusion of [(13)C]bicarbonate (sodium salt) under three different conditions: 1) before, during, and 3 h after 90 min of exercise at 45% peak oxygen consumption (Vo(2peak)); 2) before, during, and 3 h after 60 min of exercise at 65% Vo(2peak); and 3) during a time-matched resting control trial, with breath samples collected for determination of (13)CO(2) excretion rates. Throughout the resting control trial, k was stable and averaged 0.83 in men and women. During exercise, average k in men was 0.93 at 45% Vo(2peak) and 0.94 at 65% Vo(2peak), and in women k was 0.91 at 45% Vo(2peak) and 0.92 at 65% Vo(2peak), with no significant differences between intensities or sexes. After exercise at 45% Vo(2peak), k returned rapidly to control values in men and women, but following exercise at 65% Vo(2peak), k was significantly less than control at 30 and 60 min postexercise in men (0.74 and 0.72, respectively, P < 0.05) and women (0.75 and 0.76, respectively, P < 0.05) with no significant postexercise differences between men and women. We conclude that bicarbonate/CO(2) retention is transiently increased in men and women for the first hour of postexercise recovery following endurance exercise bouts of hard but not moderate intensity.  相似文献   

7.
The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.  相似文献   

8.
We compared the effects of exercise intensity (EI) on bone metabolism during and for 4 days after acute, weight-bearing endurance exercise. Ten males [mean ± SD maximum oxygen uptake (Vo(2max)): 56.2 ± 8.1 ml·min(-1)·kg(-1)] completed three counterbalanced 8-day trials. Following three control days, on day 4, subjects completed 60 min of running at 55%, 65%, and 75% Vo(2max). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH(2)-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone-alkaline phosphatase (ALP)], osteoprotegerin (OPG), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate (PO(4)), and cortisol were measured during and for 3 h after exercise and on four follow-up days (FU1-FU4). At 75% Vo(2max), β-CTX was not significantly increased from baseline by exercise but was higher compared with 55% (17-19%, P < 0.01) and 65% (11-13%, P < 0.05) Vo(2max) in the first hour postexercise. Concentrations were decreased from baseline in all three groups by 39-42% (P < 0.001) at 3 h postexercise but not thereafter. P1NP increased (P < 0.001) during exercise only, while bone-ALP was increased (P < 0.01) at FU3 and FU4, but neither were affected by EI. PTH and cortisol increased (P < 0.001) with exercise at 75% Vo(2max) only and were higher (P < 0.05) than at 55% and 65% Vo(2max) during and immediately after exercise. The increases (P < 0.001) in OPG, ACa, and PO(4) with exercise were not affected by EI. Increasing EI from 55% to 75% Vo(2max) during 60 min of running resulted in higher β-CTX concentrations in the first hour postexercise but had no effect on bone formation markers. Increased bone-ALP concentrations at 3 and 4 days postexercise suggest a beneficial effect of this type of exercise on bone mineralization. The increase in OPG was not influenced by exercise intensity, whereas PTH was increased at 75% Vo(2max) only, which cannot be fully explained by changes in serum calcium or PO(4) concentrations.  相似文献   

9.
This study was undertaken to determine the effect of exercise duration on the time course and magnitude of excess postexercise O2 consumption (EPOC). Six healthy male subjects exercised on separate days for 80, 40, and 20 min at 70% of maximal O2 consumption on a cycle ergometer. A control experiment without exercise was performed. O2 uptake, respiratory exchange ratio (R), and rectal temperature were monitored while the subjects rested in bed 24 h postexercise. An increase in O2 uptake lasting 12 h was observed for all exercise durations, but no increase was seen after 24 h. The magnitude of 12-h EPOC was proportional to exercise duration and equaled 14.4 +/- 1.2, 6.8 +/- 1.7, and 5.1 +/- 1.2% after 80, 40, and 20 min of exercise, respectively. On the average, 12-h EPOC equaled 15.2 +/- 2.0% of total exercise O2 consumption (EOC). There was no difference in EPOC:EOC for different exercise durations. A linear decrease with exercise duration was observed in R between 2 and 24 h postexercise. No change was observed in recovery rectal temperature. It is concluded that EPOC increases linearly with exercise duration at a work intensity of 70% of maximal O2 consumption.  相似文献   

10.
Nine males with mean maximal oxygen consumption (VO2max) = 63.0 ml.kg-1.min-1, SD 5.7 and mean body fat = 10.6%, SD 3.1 each completed nine counterbalanced treatments comprising 20, 50 and 80 min of treadmill exercise at 30, 50 and 70% VO2max. The O2 deficit, 8 h excess post-exercise oxygen consumption (EPOC) and EPOC:O2 deficit ratio were calculated for all subjects relative to mean values obtained from 2 control days each lasting 9.3 h. The O2 deficit, which was essentially independent of exercise duration, increased significantly (P less than 0.05) with intensity such that the overall mean values for the three 30%, 50% and 70% VO2max workloads were 0.83, 1.89 and 3.09 l, respectively. While there were no significant differences (P greater than 0.05) between the three EPOCs after walking at 30% VO2max for 20 (1.01 l), 50 (1.43 l) and 80 min (1.04 l), respectively, the EPOC thereafter increased (P less than 0.05) with both intensity and duration such that the increments were much greater for the three 70% VO2max workloads (EPOC: 20 min = 5.68 l; 50 min = 10.04 l; 80 min = 14.59 l) than for the three 50% VO2max workloads (EPOC: 20 min = 3.14 l; 50 min = 5.19 l; 80 min = 6.10 l). An analysis of variance indicated that exercise intensity was the major determinant of the EPOC since it explained five times more of the EPOC variance than either exercise duration or the intensity times duration interaction. The mean EPOC:O2 deficit ratio ranged from 0.8 to 4.5 and generally increased with both exercise intensity and duration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study was undertaken to determine the effect of fasting on the magnitude and time course of the excess postexercise O2 consumption (EPOC). Six lean untrained subjects were studied in the fasted state for 7 h after a previous strenuous exercise bout (80 min at 75% of maximal O2 uptake) and in a control experiment. The results were compared with identical control and exercise experiments where the subjects were fed a 4.5-MJ test meal after 2 h of rest. EPOC was calculated as the difference in O2 uptake between the corresponding control and exercise experiments. The total EPOC (0-7 h postexercise) was 20.9 +/- 4.5 (fasting) and 21.1 +/- 3.6 liters (food, NS). A significant prolonged EPOC component was observed in the fasted and in the fed state. The thermic effect of food (TEF) was calculated from O2 consumption and respiratory exchange ratio as the difference in energy expenditure between the corresponding food and fasting experiments. The total TEF (0-5 h postprandial) was 321 +/- 32.0 (control) and 280 +/- 37.7 kJ/5 h (exercise, NS). It is concluded that the prolonged component of EPOC is present in the fasting state. Furthermore, no major interaction effects between food intake and exercise on the postexercise O2 consumption could be detected.  相似文献   

12.
Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.  相似文献   

13.
The purposes of this study were to determine whether acute resistance exercise increases serum malondialdehyde (MDA) levels postexercise, and if so, whether resistance exercise training status influences the magnitude of the exercise-induced lipid peroxidation response. Twelve recreationally resistance-trained (RT) and 12 untrained (UT) men who did not have resistance exercise experience in the past year participated in this study. All subjects completed an 8-exercise circuit resistance exercise protocol consisting of 3 sets of 10 repetitions at 10 repetitions maximum for each exercise. Blood samples were obtained pre-exercise, at 5 minutes postexercise, and at 6, 24, and 48 hours postexercise. At pre-exercise, MDA (nmol.ml(-1)) averaged 3.41 +/- 0.25 (RT) and 3.20 +/- 0.25 (UT) and did not differ (p > 0.05) either between groups or over time. Creatine kinase (IU.L(-1)) was significantly (p < 0.05) elevated 5 minutes postexercise (170.6 +/- 25.8), 6 hours postexercise (290.3 +/- 34.4), 24 hours postexercise (365.5 +/- 49.9), and 48 hours postexercise (247.5 +/- 38.5) as compared with pre-exercise (126.4 +/- 20.2) for both groups. There was no difference (p > 0.05) in CK activity between groups. This study indicated that moderate-intensity whole-body resistance exercise had no effect on serum MDA concentration in RT and UT subjects.  相似文献   

14.
为探讨多次短时间及单次长时间的快走对脂肪代谢与激素反应的影响,以提高鼓励运动的说服力,本研究选择15名健康大学男生为研究对象,进行单次长时间快走运动(SL)(1次×30 min),或多次短时间快走运动(MS)(6次×5 min,每次中间休息30 min)。数据收集后以独立样本t检验和双因素方差分析进行统计检验。研究结果发现:MS在运动后超额摄氧量(EPOC)和恢复期能量消耗显著高于SL,且MS的总摄氧量和总能量消耗(运动期+恢复期)也显著高于SL;而SL在运动结束后甘油浓度显著高于运动前,同时显著高于同期的MS。本研究认为,多次短时间的运动在恢复期的能量消耗显著大于单次长时间的运动,且在恢复期脂肪的消耗也较高,建议不易开展长时间运动的人,可采用多次短时间的运动方式,以增加能量和脂肪的消耗。  相似文献   

15.
During the last decade, there has been active interest in indoor cycling (e.g., spinning) as a method of choreographed group exercise. Recent studies have suggested that exercise intensity during indoor cycling may be quite high and may transiently exceed Vo2max. This study sought to confirm these findings, as the apparent high intensity of indoor cycling has implications for both the efficacy and the risk of indoor cycling as an exercise method. Twenty healthy female students performed an incremental exercise test to define Vo2max and performed 2 videotaped indoor exercise classes lasting 45 minutes and 35 minutes. Vo2, heart rate (HR), and rating of perceived exertion (RPE) were measured during the indoor cycling classes, with Vo2 data integrated in 30-second intervals. The mean %Vo2max during the indoor cycling classes was modest (74 +/- 14% Vo2max and 66 +/- 14%Vo2max, respectively). However, 52% and 35% of the time during the 45- and 35-minute classes was spent at intensities greater than the ventilatory threshold (VT). The HR response indicated that 35% and 38% of the session time was above the HR associated with VT. In 10 of the 40 exercise sessions, there were segments in which the momentary Vo2 exceeded Vo2max observed during incremental testing, and the cumulative time with exercise intensity greater than Vo2max ranged from 0.5 to 14.0 minutes. It can be concluded that although the intensity of indoor cycling in healthy, physically active women is moderate, there are frequent observations of transient values of Vo2 exceeding Vo2max, and a substantial portion of the exercise bouts at intensities greater than VT. As such, the data suggest that indoor cycling must be considered a high-intensity exercise mode of exercise training, which has implications for both efficacy and risk.  相似文献   

16.
The purpose of this study was to determine the effects of high intensity/ low volume (HILV) and low intensity/high volume (LIHV) isokinetic resistance exercise on postexercise glucose tolerance. Subjects (n = 10) participated in a counterbalanced, randomized design of 2 separate isokinetic resistance exercise trials (HILV and LIHV) of reciprocal concentric knee flexion and knee extension in a fasted state. Each bout was followed by a 45-minute oral glucose tolerance test (OGTT; 1.8 g.kg fat free mass(-1)). Blood samples were obtained every 15 minutes to determine glucose and insulin concentrations. There was no difference in total work between the 2 trials (p = 0.229). Blood glucose was significantly higher at all time points compared with time 0 following the LIHV trial (p < 0.05). Following the HILV trial, blood glucose was significantly elevated at 15 and 30 minutes (p < 0.05), but returned to resting values by 45 minutes. Insulin concentration was significantly elevated following both trials at all time points (p < 0.05). Blood glucose and insulin were significantly higher following the LIHV at 30 and 45 minutes compared with the HILV trial (p < 0.05). These results demonstrate that although the total work output was similar across trials, high intensity muscle contraction is associated with an enhanced normalization of glucose homeostasis following a large postexercise oral glucose feed.  相似文献   

17.
It is widely accepted that the relationship between oxygen consumption and body weight obtained during exercise on a bicycle ergometer differs from that obtained during treadmill walking. Experimental evidence to support this claim is lacking. To examine this difference a group of subjects (body weight 41--81 kg) undertook a predetermined level of submaximal exercise on a bicycle ergometer and a treadmill. Oxygen consumption was measured in a steady state at rest (i.e. sitting on the bicycle ergometer and standing on the treadmill) and during the two modes of exercise. A significant positive correlation between oxygen consumption and body weight was obtained under all four conditions of measurement. At rest the two regression lines did not differ in slope or elevation. During exercise the slope and the elevation of the line obtain from treadmill walking were significantly greater than from bicycle ergometer exercise. The 'metabolic cost' of bicycle ergometer exercise, (Vo2 during exercise--V02 at rest), showed no significant correlation with body weight. In contrast, there was a significant positive correlation during walking. It is suggested that these differences have arisen due to a different proportion of the total body weight supported by the subject in the two forms of exercise.  相似文献   

18.
To evaluate the effect of different levels of arterial oxygen content on hemodynamic parameters during exercise nine subjects performed submaximal bicycle or treadmill exercise and maximal treadmill exercise under three different experimental conditions: 1) breathing room air (control); 2) breathing 50% oxygen (hyperoxia); 3) after rebreathing a carbon monoxide gas mixture (hypoxia). Maximal oxygen consumption (Vo2 max) was significantly higher in hyperoxia (4.99 1/min) and significantly lower in hypoxia (3.80 1/min) than in the control experiment (4.43 1/min). Physical performance changes in parallel with Vo2 max. Maximal cardiac output (Qmax) was similar in hyperoxia as in control but was significantly lower in hypoxia mainly due to a decreased stroke volume. A correlation was found between Vo2 max and transported oxygen, i.e., Cao2 times Amax, thus suggesting that central circulation is an important limiting factor for human maximal aerobic power. During submaximal work HR was decreased in hyperoxia and increased in hypoxia. Corresponding Q values were unchanged except for a reduction during high submaximal exercise in hyperoxia.  相似文献   

19.
Active and passive intervals (AI, PI) between exercise series promote different hemodynamic responses; however, the impact of these intervals on the blood pressure response has not yet been investigated. The objective of this study was to compare the impact of AIs and PIs during resistance exercises with the magnitude of postexercise hypotension (PEH). Elderly hypertensive women (n = 21, 61.2 ± 2 years of age) completed 4 sessions for upper or lower limbs with AI or PI (3 sets, 15 repetitions, 60% load of 15 repetition maximum (RM), and an interval of 90 seconds between sets). Blood pressure was measured 10 minutes before and at 10, 20, 30, 40, and 50 minutes after the exercise sessions. The heart rate at the end of each AI was always significantly higher than that after the PI, but the perceived exertion as measured by the Perceived Exertion Scale (OMNI-RPE) was similar to that of PI exercise protocols. In the lower limb exercises, AI resulted in significantly and consistently higher PEH than in exercises with PI for both systolic (from 20 minutes postexercise) and diastolic (from 10 minutes postexercise) pressures. The upper limb exercises promoted much more discrete PEH in relation to the lower limb exercises, given that the AI promoted significantly higher PEH relative to the PI protocols, but only for systolic PEH and only from 30 minutes postexercise. This is the first time that AIs between sets in a session of resistance exercises have been shown to be a highly effective methodological strategy to increase PEH in elderly hypertensive women.  相似文献   

20.
To investigate the effect of different levels of central blood volume on cardiac performance during exercise, M-mode echocardiography was utilized to determine left ventricular size and performance during cycling exercise in the upright posture (UP), supine posture (SP), and head-out water immersion (WI). At submaximal work loads requiring a mean O2 consumption (Vo2) of 1.2 1/min and 1.5 1/min, mean left ventricular end-diastolic and end-systolic dimensions were significantly greater (P less than 0.05) with WI than UP. In the SP during exercise, left ventricular dimensions were intermediate between UP and WI. Heart rate did not differ significantly among the three conditions at rest and at submaximal exercise up to a mean Vo2 of 1.8 1/min. However, at a mean Vo2 of 2.4 1/min, heart rate in the UP was significantly greater than WI (P less than 0.01) and the SP (P less than 0.05). Maximal Vo2 did not differ statistically in the three conditions. These data indicate that a change in central blood volume results in alterations in left ventricular end-diastolic and end-systolic dimensions during moderate levels of exercise and a change in heart rate at heavy levels of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号