首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

2.
This study investigated training loads, injury rates, and physical performance changes associated with a field conditioning program in junior and senior rugby league players. Thirty-six junior (16.9 [95% confidence interval: 16.7-17.1] years) and 41 senior (25.5 [23.6- 27.3] years) rugby league players participated in a 14-week preseason training program that included 2 field training sessions each week. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) before and after training. Improvements in agility, muscular power, and maximal aerobic power were observed in both the junior and senior players following training; however, the improvement in maximal aerobic power and muscular power were greatest in the junior players. Training loads and injury rates were higher in the senior players. These findings demonstrate that junior and senior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in training age.  相似文献   

3.
This study investigated the physiological and anthropometric characteristics of elite women rugby league players and developed physical performance standards for these athletes. Thirty-two elite women rugby league players underwent measurements of standard anthropometry (body mass, height, sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (505 test), glycolytic capacity (glycolytic agility test), and estimated maximal aerobic power (multistage fitness test). The skinfold thickness, speed, agility, vertical jump height, glycolytic capacity, and estimated maximal aerobic power results were 6.0-38.1% poorer than previously reported for elite women team sport athletes (e.g., rugby union, soccer, and hockey). Although no significant differences (p > 0.05) were detected between selected and nonselected players for any of the physiological or anthropometric characteristics, significant differences (p < 0.05) were detected between forwards and backs for body mass, skinfold thickness, 10-, 20-, and 40-m speed, and estimated maximal aerobic power. When data were analyzed according to positional similarities, it was found that the hit-up forwards positional group were heavier, had greater skinfold thickness, and had lower 10-, 20-, and 40-m speed, muscular power, glycolytic capacity, and estimated maximal aerobic power than the adjustables and outside backs positional groups. The results of this study show that elite women rugby league players have slower speed and agility, lower muscular power, glycolytic capacity, and estimated maximal aerobic power, and greater body mass and skinfold thickness than previously reported for other elite women team sport athletes. These findings show the need to develop all physiological parameters to allow elite women rugby league players to more effectively tolerate the physiological demands of competition, reduce fatigue-related errors in skill execution, and decrease the risk of injury.  相似文献   

4.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

5.
This study investigated the effects of skill-based conditioning games and traditional conditioning for improving speed, agility, muscular power, and maximal aerobic power in rugby league players. Sixty-nine subelite rugby league players performed either a skill-based conditioning games program (N = 32) or a traditional conditioning (i.e., running activities with no skill component) program (N = 37). Each player participated in a 9-week in-season training program, performed over 2 competitive seasons. Players performed 2 organized field-training sessions each week. Players underwent measurements of speed (10-m, 20-m, and 40-m sprint), muscular power (vertical jump), agility (L run), and maximal aerobic power (multi-stage fitness test) before and after the training period. Skill-based conditioning games induced a significant improvement (p < 0.05) in 10-m, 20-m, and 40-m speed, muscular power, and maximal aerobic power, whereas traditional conditioning activities improved 10-m speed and maximal aerobic power only. No significant differences (p > 0.05) were detected between the traditional conditioning and skill-based conditioning games groups for changes in 10-m speed, agility, and maximal aerobic power. Both groups won 6 of 8 matches played within the training period, resulting in a win-loss ratio of 75%. However, on average, the skill-based conditioning games group scored more points in attack (p < 0.05) and had a greater (p < 0.05) points differential than the traditional conditioning group. The results of this study demonstrate that skill-based conditioning games offer an effective method of in-season conditioning for rugby league players. In addition, given that skills learned from skill-based conditioning games are more likely to be applied in the competitive environment, their use may provide a practical alternative to traditional conditioning for improving the physiological capacities and playing performance of rugby league players.  相似文献   

6.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

7.
The purpose of this study was to investigate the physiological and anthropometric characteristics of junior volleyball players competing at the elite, semi-elite, and novice levels and to establish performance standards for these athletes. One hundred and fifty-three junior national (N = 14 males; N = 20 females), state (N = 16 males; N = 42 females), and novice (N = 27 males; N = 34 females) volleyball players participated in this study. Subjects underwent measurements of standard anthropometry (body mass, height, standing reach height, and sum of 7 skinfolds), lower-body muscular power (vertical jump and spike jump), upper-body muscular power (overhead medicine ball throw), speed (5-m and 10-m sprint), agility (T-test), and estimated maximal aerobic power (multistage fitness test) during the competitive phase of the season, after obtaining a degree of match fitness. Significant differences (p < 0.05) were detected among junior national, state, and novice volleyball players for height, standing reach height, skinfold thickness, lower-body muscular power, agility, and estimated maximal aerobic power, with the physiological and anthropometric characteristics of players typically improving with increases in playing level. Male players were taller, heavier, leaner, and had greater standing reach height, speed, agility, muscular power, and estimated maximal aerobic power than female players. These findings provide normative data and performance standards for junior volleyball players competing at the elite, semi-elite, and novice levels. Given the improvements in lower-body muscular power, agility, and estimated maximal aerobic power with increased playing level, and given the importance of these qualities to competitive performances, conditioning coaches should train these qualities to improve the playing performances of junior volleyball players.  相似文献   

8.
This study investigated the influence of fatigue on tackling technique in rugby league players and determined the relationship between selected physiological capacities and fatigue-induced decrements in tackling technique. Eight rugby league players underwent a standardized one-on-one tackling drill in a 10-m grid. Players performed the one-on-one tackling drill before strenuous exercise and following game-specific repeated-effort exercise of progressively increasing intensities (corresponding to moderate, heavy, and very heavy intensity) in order to induce fatigue that was representative of match conditions. Video footage was taken from the rear, side, and front of the defending player. Tackling technique was objectively assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfold measurements), speed (10-, 20-, and 40-m sprint), muscular power (vertical jump), agility (L run), and estimated maximal aerobic power (VO2max multistage fitness test). A progressive increase in total repeated-effort time, heart rate, blood lactate concentration, and ratings of perceived exertion occurred throughout the repeated-effort protocol, demonstrating a progressive increase in intensity and fatigue. Fatigue resulted in progressive reductions in tackling technique. Players with the best tackling technique in a nonfatigued state demonstrated the greatest decrement in tackling technique under fatigued conditions. In addition, a significant association was observed between estimated VO2max (r = -0.62) and agility (r = 0.68) and fatigue-induced decrements in tackling technique. From a practical perspective, these findings suggest that strength and conditioning programs designed to develop endurance, change of direction speed, and anticipation skills may reduce fatigue-induced decrements in tackling technique. Furthermore, any defensive drills designed to improve tackling technique should be performed before and under fatigue.  相似文献   

9.
This study investigated the tackling ability of high-performance rugby league players and determined the relationship between physiological and anthropometric qualities and tackling ability in these athletes. Twenty professional (National Rugby League) and 17 semiprofessional (Queensland Cup) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Professional players had significantly greater (p ≤ 0.05) tackling proficiency than semiprofessional players (87.5 ± 2.0 vs. 75.0 ± 2.3%). Professional players were significantly (p ≤ 0.05) older, more experienced, leaner, and had greater acceleration than semiprofessional players. The strongest individual correlates of tackling ability were age (r = 0.41, p ≤ 0.05), playing experience (r = 0.70, p ≤ 0.01), skinfold thickness (r = -0.59, p ≤ 0.01), acceleration (r = 0.41, p ≤ 0.05), and lower body muscular power (r = 0.38, p ≤ 0.05). When hierarchical multiple regression analysis was performed to determine which of the variables predicted tackling ability, playing experience and lower body muscular power were the only variables that contributed significantly (r2 = 0.60, p ≤ 0.01) to the predictive model. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration, lower body muscular power, and lean muscle mass to improve tackling ability in high-performance rugby league players.  相似文献   

10.
This study investigated the site and nature of rugby league training injuries, and identified the training activities that were most likely to result in injury in rugby league players. The incidence of training injuries was prospectively studied in 60 semiprofessional rugby league players over 1 season. Injury data was collected from 72 training sessions, which included all preseason and in-season training sessions. Injuries were described according to site, type, and the training activity performed at the time of injury. The majority of injuries (90.9 per 1000 training hours, 37.5%) were sustained in traditional conditioning activities that involved no skill component (i.e., running without the ball). In contrast, the incidence of injuries sustained while participating in skill-based conditioning games (26.0 per 1000 training hours, 10.7%) was low. These results suggest that skill-based conditioning games offer a safe, effective method of conditioning for rugby league players.  相似文献   

11.
This study investigated the effect of a skill-based training program on measurements of skill and physical fitness in talent-identified volleyball players. Twenty-six talented junior volleyball players (mean +/- SE age, 15.5 +/- 0.2 years) participated in an 8-week skill-based training program that included 3 skill-based court sessions per week. Skills sessions were designed to develop passing, setting, serving, spiking, and blocking technique and accuracy as well as game tactics and positioning skills. Coaches used a combination of technical and instructional coaching, coupled with skill-based games to facilitate learning. Subjects performed measurements of skill (passing, setting, serving, and spiking technique and accuracy), standard anthropometry (height, standing-reach height, body mass, and sum of 7 skinfolds), lower-body muscular power (vertical jump, spike jump), upper-body muscular power (overhead medicine-ball throw), speed (5- and 10-m sprint), agility (T-test), and maximal aerobic power (multistage fitness test) before and after training. Training induced significant (p < 0.05) improvements in spiking, setting, and passing accuracy and spiking and passing technique. Compared with pretraining, there were significant (p < 0.05) improvements in 5- and 10-m speed and agility. There were no significant differences between pretraining and posttraining for body mass, skinfold thickness, lower-body muscular power, upper-body muscular power, and maximal aerobic power. These findings demonstrate that skill-based volleyball training improves spiking, setting, and passing accuracy and spiking and passing technique, but has little effect on the physiological and anthropometric characteristics of players.  相似文献   

12.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

13.
This study investigated the influence of playing position on the site, nature, and cause of injuries in rugby league. The incidence, site, nature, and cause of playing injuries was prospectively studied in 156 rugby league players over 2 seasons. An injury was defined as any pain or disability suffered by a player during a match that resulted in the player missing a subsequent match. The hooker (101 per 1,000 playing hours) and prop (92 per 1,000 playing hours) positions had the highest incidence of injury. Injuries sustained by the fullback (32 per 1,000 playing hours) and halfback (44 per 1,000 playing hours) positions were less common. Compared with other individual playing positions, props had a significantly higher incidence of overexertion injuries (22 per 1,000 playing hours), thigh and calf injuries (47 per 1,000 playing hours), and hematomas (19 per 1,000 playing hours), whereas the five-eighth position (31 per 1,000 playing hours) and the hookers and halves positional group (17 per 1,000 playing hours) had a significantly higher incidence of falling and stumbling injuries. These results demonstrate that the hooker and prop positions have higher injury rates than other rugby league positions. Furthermore, the site, type, and cause of injuries are different among individual playing positions and playing groups. These findings suggest that individual position training for injury prevention is warranted in rugby league.  相似文献   

14.
This study investigated the tackling ability of junior elite and subelite rugby league players, and determined the relationship between selected physiological and anthropometric characteristics and tackling ability in these athletes. Twenty-eight junior elite (mean ± SD age, 16.0 ± 0.2 years) and 13 junior subelite (mean ± SD age, 15.9 ± 0.6 years) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (stature, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Junior elite players had significantly greater (p < 0.05) tackling proficiency than junior subelite players (65.7 ± 12.5 vs. 54.3 ± 16.8%). Junior elite players tended to be taller, heavier, leaner, and have greater acceleration, change of direction speed, and muscular power, than the junior subelite players. The strongest individual correlates of tackling ability were acceleration (r = 0.60, p < 0.001) and lower body muscular power (r = 0.38, p < 0.05). When multiple linear regression analysis was performed to determine which of the physiological and anthropometric characteristics predicted tackling ability, fast acceleration was the only variable that contributed significantly (r2 = 0.24, p < 0.01) to the predictive model. These findings demonstrate that fast acceleration, and to a lesser extent, lower body muscular power contribute to effective tackling ability in junior rugby league players. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration and lower body muscular power qualities to improve tackling ability in junior rugby league players.  相似文献   

15.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

16.
The purpose of this investigation was to observe changes in maximal upper-body strength and power and shifts in the load-power curve across a multiyear period in experienced resistance trainers. Twelve professional rugby league players who regularly performed combined maximal strength and power training were observed across a 4-year period with test data reported every 2 years (years 1998, 2000, and 2002). Upper-body strength was assessed by the 1 repetition maximum bench press and maximum power during bench press throws (BT Pmax) with various barbell resistances of 40-80 kg. During the initial testing, players also were identified as elite (n = 6) or subelite (n = 6), depending upon whether they participated in the elite first-division national league or second-division league. This subgrouping allowed for a comparison of the scope of changes dependent upon initial strength and training experience. The subelite group was significantly younger, less strong, and less powerful than the elite group, but no other difference existed in height or body mass in 1998. Across the 4-year period, significant increases in strength occurred for the group as a whole and larger increases were observed for the subelite than the elite group, verifying the limited scope that exists for strength gain in more experienced, elite resistance-trained athletes. A similar trend occurred for changes in BT Pmax. This long-term observation confirms that the rate of progress in strength and power development diminishes with increased strength levels and resistance training experience. Furthermore, it also indicates that strength and power can still be increased despite a high volume of concurrent resistance and endurance training.  相似文献   

17.
During the course of a rugby league match, players are involved in multiple physical collisions, predominantly in the form of tackles. The purpose of this study was to describe the nature of, and circumstances relating to the various types of tackles completed by various playing positions in professional rugby league competition. Time-motion analysis was used during 5 competition matches; 1 player from 3 positional groups (hit-up forwards, adjustables, and outside backs) was analyzed in each match. Tackles were assessed by recording the sequence of involvement (e.g., whether a player was the first, second, or third player to engage in the tackle), the area of initial body contact on the player being tackled (e.g., high-above waist or low-below waist) and the type of tackle (e.g., front-on tackle, side-on tackle, and tackle from behind). The hit-up forwards, adjustables and outside backs averaged 166, 89, and 41 tackles, respectively, a game; the majority (46%) involved the observed defender being the first physical contact in the tackle. The present data show that the first defender generally makes a front-on tackle, either low or high, whereas the second player performs a front-on high tackle. If a third player is involved in a tackle, he or she makes contact with the player from the side and above the waist. The most frequent activity immediately before tackling is striding, followed by sprinting. The development of strength-based wrestling for individual playing positions should be an integral part of physical conditioning for rugby league players. The development of tackling skills at various movement intensities should also be considered.  相似文献   

18.
This study investigated the impact of day and night games in the professional rugby league on body weight and tympanic temperature change in participants. Twenty-five players contracted to an English Super League club had their pre- and postgame body weight and tympanic temperatures recorded during 10 games played during the official professional rugby league season, representing a total of 165 player appearances. The mean (+/-SD) ambient temperature and relative humidity was 12.3 degrees C (+/-6.0) and 83.3% (+/-11.4), respectively. Body weight was recorded using a set of calibrated Soehnle digital scales with players wearing underwear only and towel-dried of all sweat (postmatch). Tympanic temperature was recorded using a Braun ThermoScan Pro LT instant thermometer. Players were allowed to ingest fluid ad libitum throughout each match. Wet and dry bulb temperatures were recorded at the commencement and completion of each match. Significant changes in pregame to postgame body weight and tympanic temperature were found, but these were not influenced by the time of day that the game was played. The mean decrease in body weight was 0.86 kg (SE 0.085, p < 0.000), and the mean increase in tympanic temperature was 0.34 degrees C (SE 0.070, p < 0.000). No significant differences in body weight or tympanic temperature change were found between forwards and backs. Participation in the English professional rugby league can produce significant decreases in body weight and increases in body temperature that may lead to impaired performance. It is important for participants, coaches, and administrators to introduce strategies that will minimize the impact of environmental conditions on thermoregulation and ultimately player performance.  相似文献   

19.
This study investigated changes in body weight pre and postmatch and 1, 2, and 3 days postmatch. Thirty-six players contracted to an English Premiership rugby union club had their pre and postmatch body weight and 1, 2, and 3 day postmatch body weight recorded across 14 matches played (10 at home and 4 away) during the official 2003-2004 professional rugby union season, representing a total of 262 player appearances. Body weight was recorded using a set of calibrated Seca digital scales with players wearing underwear only and toweled dry of all sweat (postmatch). Players were allowed to ingest fluid ad libitum throughout each match. A number of players recorded pre to postmatch reductions of body weight of >2% with some as high as 4.9%. Significant position-specific mean reductions in prematch to postmatch body weight (±SD) were found for both forwards (1.94 ± 0.14 kg) and backs (1.04 ± 0.17 kg). The mean gain in postmatch to 1-day postmatch body weight was significant for forwards (1.40 ± 0.27 kg) but not for backs (0.76 ± 0.30 kg). There were no significant mean differences between prematch and 2 or 3 days postmatch body weight for either forwards or backs. Forwards on average lost a significantly greater proportion of their weight pre to postmatch than backs (p = 0.005). Forwards were on average 99.5% of the prematch weight at 1 day postmatch, whereas backs were 99.7% (p = 0.598). Forwards were 99.6% of their prematch weight at 3 days postmatch, whereas backs were 100.4% (p = 0.035). Changes in fluid status can be effectively monitored by recording changes in body weight and is useful where players are undertaking training sessions within 1, 2, or 3 days after their last match as a measure of rehydration status.  相似文献   

20.
ABSTRACT: Suarez-Arrones, LJ, Nu?ez, FJ, Portillo, J, and Mendez-Villanueva, A. Running demands and heart rate responses in men rugby sevens. J Strength Cond Res 26(11): 3155-3159, 2012-The purpose of this study was to examine match running performance and exercise intensity in a Rugby Sevens (7s) team during competitive club-level matches. Time-motion analyses (global position system) were performed on 7 male rugby players during 5 competitive matches in a 2-day tournament. The players covered an average distance of 1,580.8 ± 146.3 m per game (14 minutes). Over this distance, 34.8% (549.7 ± 79.1 m) was spent standing and walking, 26.2% (414.8 ± 105.1 m) jogging, 9.8% (154.6 ± 53.5 m) cruising, 15.5% (244.5 ± 80.1 m) striding, 5% (79.5 ± 37.2 m) high-intensity running, and 8.7% (137.7 ± 84.9 m) sprinting. The average maximal distance of sprints, the number of sprints, the minimum distance of sprint, and the mean sprint distance over the game were 29.5 ± 11.7 m, 7.4 ± 3.9 sprints, 9.1 ± 5.7 m, and 18 ± 7.6 m, respectively. The player's work-to-rest ratio was 1:0.5. For over 75% of the game, the players were exposed to heart rates (HRs) >80% of their maximal HR. There were no statistical differences between the first and second halves in any of the variables analyzed. This study indicates that the physical demands of Rugby 7s are quite different from those encountered in other rugby codes and that the training regimes need to meet the increased overall running demands, the augmented high-intensity running actions, and the reduced work-to-rest ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号