首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Observation of the physiological responses was made on seven young male subjects ages 27–31, during pedalling a bicycle ergometer at the constant work load of 600 kg. m/min for 20 min and recovery in 35°C with 50% RH, in 30°C with 50% RH and in 23°C with 50% RH. Heart rate, respiratory volume, total oxygen intake and energy requirement were increased with an increase in ambient temperature, while blood pressures were lower in a hot environment than in cooler environments. In 35°C, oxygen intake during exercise, oxygen debt and anaerobic fraction of oxygen debt had increased when compared with those in 23°C. Thus it is inferred that the energy requirement, the oxygen debt and the anaerobic fraction of the oxygen debt for a fixed work had increased more in a hot environment than in a comfortable environment. Factors which caused differences in the physiological reactions during exercise and recovery in different conditions are discussed.  相似文献   

3.
We set out to demonstrate whether changes in plasma volume, haematocrit and some important blood constituents occurred after swimming 100 m and 800 m, as well as monitoring the duration of these changes. We measured exercise-induced changes in concentration of plasma constituents in eight subjects, and determined the expected effects of haemoconcentration on these constituents. We also investigated the different biochemical responses occurring after maximal exercise (100 m), as compared to submaximal exercise (800 m). The haematocrit increased significantly after the 100 m swim and to a lesser extent after the 800-m swim, returning to basal levels within 30 min. The plasma volume decreased by 16% on completion of the 100 m and by 8% on completion of the 800 m. The blood lactate concentration increased 15-fold and 10-fold after the 100-m and 800-m swims respectively. The plasma potassium concentration increased significantly immediately on completion of the 100-m swim, then decreased significantly at 2 1/2 and 5 min post-exercise, returning to near-basal values at 30 min. The potassium concentration measured after the 800-m event did not differ significantly from basal levels, however the measured concentrations were significantly lower than the concentrations expected on the basis of haemoconcentration. The plasma sodium concentrations measured after both 100-m and 800-m swims were significantly increased. However, calculations correcting for haemoconcentration showed significant losses in total circulating sodium.  相似文献   

4.
5.
The objective of this study was to investigate the potential variations in cardiorespiratory and metabolic parameters and running performance among 3 modes of exercise of the same duration, namely, intermittent running with active recovery (AR) or passive recovery (PR) and continuous running (CR) and whether these variations could affect passive recovery time (PRT). Fifteen male physical education students with a subspecialty in soccer were studied (mean age 22.3 ± 2.5 years, training experience 12.3 ± 2.5 years) in the middle of the playing season. The results showed that during exercise, the highest heart rate (HR) and VO2 values were observed in CR, whereas the lowest values in PR followed by AR. Blood lactate (BLa) concentration was higher in PR by 38% compared to that in AR (p < 0.05). The exercise duration was similar between PR and AR tests and longer than in CR. With regard to PRT, the highest HR (186 ± 9 b · min(-1)), VO2 (55.5 ± 5.2 ml · kg(-1) · min(-1)), and BLa (5.1 ± 1.7 mmol · L(-1)) values were found in CR. No differences in HR and VO2 between PR and AR were detected. However, despite the differences in BLa concentration between AR and PR during exercise, the PRT BLa values between these 2 exercise modes were not different. Among the 3 running protocols, only CR appeared to have fully challenged the cardiorespiratory system inducing maximal HR and VO2 responses during exercise and high BLa values in PRT, yet these responses were not associated with better exercise performance compared to intermittent running. Therefore, intermittent exercise, regardless of implementing passive or active interval, might be the preferable exercise mode particularly in activities extended over 30 minutes.  相似文献   

6.
This study investigated the responses in substrate- and energy-based properties to repetitive days of prolonged submaximal exercise and recovery. Twelve untrained volunteers (Vo(2)(peak) = 44.8 +/- 2.0 ml.kg(-1).min(-1), mean +/- SE) cycled ( approximately 60 Vo(2)(peak)) on three consecutive days followed by 3 days of recovery. Tissue samples were extracted from the vastus lateralis both pre- and postexercise on day 1 (E1), day 3 (E3), and during recovery (R1, R2, R3) and were analyzed for changes in metabolism, substrate, and enzymatic and transporter responses. For the metabolic properties (mmol/kg(-1) dry wt), exercise on E1 resulted in reductions (P < 0.05) in phosphocreatine (PCr; 80 +/- 1.9 vs. 41.2 +/- 3.0) and increases (P < 0.05) in inosine monophosphate (IMP; 0.13 +/- 0.01 vs. 0.61 +/- 0.2) and lactate (3.1 +/- 0.4 vs. 19.2 +/- 4.3). At E3, both IMP and lactate were lower (P < 0.05) during exercise. For the transporters, the experimental protocol resulted in a decrease (P < 0.05) in glucose transporter-1 (GLUT1; 29% by R1), an increase in GLUT4 (29% by E3), and increases (P < 0.05) for both monocarboxylate transporters (MCT) (for MCT1, 23% by R2 and for MCT4, 18% by R1). Of the mitochondrial and cytosolic enzyme activities examined, cytochrome c oxidase (COX), and hexokinase were both reduced (P < 0.05) by exercise at E1 and in the case of hexokinase and phosphorylase by exercise on E3. With the exception at COX, which was lower (P < 0.05) at R1, no differences in enzyme activities existed at rest between E, E3, and recovery days. Results suggest that the glucose and lactate transporters are among the earliest adaptive responses of substrate and metabolic properties studied to the sudden onset of regular low-intensity exercise.  相似文献   

7.
The aim of the present study was to determine whether oxygen supply to non-exercised muscle during recovery following fatiguing exercise is influenced by accumulated metabolites within exercised muscle. Twelve healthy male subjects performed 2-min isometric handgrip exercise at 40% maximal voluntary contraction with their right hand and the exercise was followed by a 3-min recovery period. Muscle oxygen saturation (SmO(2)) determined by near-infrared spatially resolved spectroscopy was used as an index of oxygen supply to non-exercised muscle and was measured in biceps brachii and tibialis anterior muscles on the left side. Compared to the pre-exercise baseline level, SmO(2) in the biceps brachii muscle (SmO(2BB)) increased significantly from 30 sec to 1 min after the start of exercise, while SmO(2) in the tibialis anterior muscle (SmO(2TA)) remained stable during the initial 1 min of exercise. Both SmO(2BB) and SmO(2TA) began to decrease at about 1 min and continued to decrease thereafter. Due to the initial increase in SmO(2BB), only SmO(2TA) showed a significant decrease during exercise. During recovery, SmO(2BB) did not differ significantly from the pre-exercise baseline level, whereas SmO(2TA) remained significantly lower until about 1.5 min of recovery and then it did not differ significantly from the baseline level. In another bout, subjects performed handgrip exercise of the same intensity, but post-exercise arterial occlusion (PEAO) of the exercised muscle was imposed for 2 min immediately after the end of exercise. During PEAO, SmO(2BB) decreased significantly compared to the baseline level, whereas SmO(2TA) remained significantly lower until the end of PEAO. The significant decrease in SmO(2BB) and the prolongation of decrease in SmO(2TA) by PEAO suggests that the recovery of SmO(2) in the non-exercised arm and leg is mediated by muscle metaboreceptors.  相似文献   

8.
9.
On different days, 10 men performed 30-min sessions of cycling at 50-55% of their peak oxygen uptake (VO(2)); one at 40 rpm and another at 80 rpm. Rectal temperature, heart rate (HR), mean arterial pressure (MAP), plasma lactate, glucose, insulin, and cortisol were measured before exercise, during the 15th and 30th min of exercise, and at 5 and 10 min postexercise. Rating of perceived exertion (RPE) was assessed 15 and 30 min into exercise. Electromyography established cadence-specific different intensities of quadriceps activation during cycling. At minute 30 of exercise and 5 min postexercise, HR was significantly (P < 0.05) greater at 40 rpm than at 80 rpm. MAP remained elevated longer after the 40-rpm than after the 80-rpm bout. Similarly, exercise-induced increases in plasma lactate persisted longer after the 40-rpm bout. Cortisol levels were elevated only at 40 rpm. RPE was higher during the slower cadence. These data indicated that the more pronounced muscle activation pattern associated with pedaling at 40 rpm resulted in greater physiological and psychophysiological stress than that observed at 80 rpm even though VO(2) was the same.  相似文献   

10.
The purpose of this investigation was to examine the influence of L-carnitine L-tartrate (LCLT) supplementation using a balanced, cross-over, placebo-controlled research design on the anabolic hormone response (i.e., testosterone [T], insulin-like growth factor-I, insulin-like growth factor-binding protein-3 [IGFBP-3], and immunofunctional and immunoreactive growth hormone [GHif and GHir]) to acute resistance exercise. Ten healthy, recreationally weight-trained men (mean +/- SD age 23.7 +/- 2.3 years, weight 78.7 +/- 8.5 kg, and height 179.2 +/- 4.6 cm) volunteered and were matched, and after 3 weeks of supplementation (2 g LCLT per day), fasting morning blood samples were obtained on six consecutive days (D1-D6). Subjects performed a squat protocol (5 sets of 15-20 repetitions) on D2. During the squat protocol, blood samples were obtained before exercise and 0, 15, 30, 120, and 180 minutes postexercise. After a 1-week washout period, subjects consumed the other supplement for a 3-week period, and the same experimental protocol was repeated using the exact same procedures. Expected exercise-induced increases in all of the hormones were observed for GHir, GHif, IGFBP-3, and T. Over the recovery period, LCLT reduced the amount of exercise-induced muscle tissue damage, which was assessed via magnetic resonance imaging scans of the thigh. LCLT supplementation significantly (p < 0.05) increased IGFBP-3 concentrations prior to and at 30, 120, and 180 minutes after acute exercise. No other direct effects of LCLT supplementation were observed on the absolute concentrations of the hormones examined, but with more undamaged tissue, a greater number of intact receptors would be available for hormonal interactions. These data support the use of LCLT as a recovery supplement for hypoxic exercise and lend further insights into the hormonal mechanisms that may help to mediate quicker recovery.  相似文献   

11.
Previous studies of contracting muscle with low loading and partial vascular occlusion demonstrated hypertrophy and strength adaptations similar to and exceeding those observed with traditional moderate to high resistance (Shinohara M, Kouzaki M, Yoshihisa T, and Fukunaga T. Eur J Physiol 77: 189-191, 1998; Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, and Ishii N. J Appl Physiol 88: 2097-2106, 2000; Takarada Y, Sato Y, and Ishii N. Eur J Physiol 86: 308-314, 2002). The purpose of the study was to determine the anabolic and catabolic hormone responses to light resistance exercise combined with partial vascular occlusion. Three experimental conditions of light resistance with partial occlusion (LRO), moderate resistance with no occlusion (MR), and partial occlusion without exercise (OO) were performed by eight healthy subjects [mean 21 yr (SD 1.8)]. Three sets of single-arm biceps curls and single-leg calf presses were completed to failure with 1-min interset rest periods. Workloads of 30 and 70% one repetition maximum for each exercise were lifted for the LRO and MR trials, respectively. Blood samples were taken preexercise, postexercise, and 15 min postexercise for each experimental condition. Lactate increased significantly in the LRO and MR trials and was not significantly different from each other at any time point. Growth hormone (GH) increased significantly by fourfold from pre- to postexercise in the LRO session but did not change significantly during this time period in the MR and OO trials (8.3 +/- 2.3 vs. 2.1 +/- 1.2 and 2.6 +/- 0.94 microg/l; respectively, P < 0.05). There were no changes in resting total testosterone [T; mean 15.7 +/- 1.6 (SE) nmol/l], free testosterone (FT; 54.1 +/- 4.5 pmol/l), or cortisol (267.6 +/- 22 nmol/l) across all trials and times. In conclusion, with similar lactate responses, light exercise combined with partial vascular occlusion elicits a greater GH response than moderate exercise without occlusion but does not affect T, FT, or cortisol.  相似文献   

12.
13.
Sarotherodon mossambicus , Cyprinus carpio and Salmo gairdneri were acclimatized at temperatures of 15, 20 and 25° C in order to study physiological responses of blood to temperature fluctuations in the laboratory. Cyprinus carpio exhibited the greater ability to survive at these temperatures. Sarotherodon mossambicus experienced osmoregulatory collapse at 15° C which also occurred in trout at 25° C. This was associated with acid-base malfunction in the trout.  相似文献   

14.
PurposePreload of antagonist muscles can be achieved by reciprocal actions (RAs) or by opposing muscle actions. However, evidence concerning neuromuscular and fatigue responses are scarce.ObjectiveTo compare the effects of different knee flexor (KF) preload methods on knee extension (KE) vastus medialis muscle fatigue, based on EMG-spectral index (FI), load range (LR), total work (TW), blood lactate (LAC) and biceps femoris co-activation (BFc) during resistance exercise.MethodsTwenty-four healthy men (23.5 ± 3.6 yrs) performed three antagonist pre-load isokinetic exercises (4 sets, 10 repetitions, 60° s?1, 1 min rest between sets): RA (KF contraction immediately followed by KE); Superset (SS; one KF set immediately followed by one KE set); Multiple Set (MS; four KF sets followed by four KE sets).ResultsTotal work was significantly greater in RA. There was no significant decrease in LR between sets in RA. The BFc did not differ between protocols (p = 0.063). However, RA presented greater biceps femoriscoactivation. The FI was greater during SS compared to RA and MS (p < 0.05). The SS had greater LAC when compared to MS and RA (p = 0.005 and p = 0.007, respectively).ConclusionIt is suggested that the RA protocol is more neuromuscular and metabolic efficient during the performance of knee extension resistance exercise.  相似文献   

15.
This study examined the salivary hormone and immune responses of elite female athletes to 3 different resistance exercise schemes. Fourteen female basketball players each performed an endurance scheme (ES-4 sets of 12 reps, 60% of 1 repetition maximum (1RM) load, 1-minute rest periods), a strength-hypertrophy scheme (SHS-1 set of 5RM, 1 set of 4RM, 1 set of 3RM, 1 set of 2RM, and 1set of 1RM with 3-minute rest periods, followed by 3 sets of 10RM with 2-minute rest periods) and a power scheme (PS-3 sets of 10 reps, 50% 1RM load, 3-minute rest periods) using the same exercises (bench press, squat, and biceps curl). Saliva samples were collected at 07:30 hours, pre-exercise (Pre) at 09:30 hours, postexercise (Post), and at 17:30 hours. Matching samples were also taken on a nonexercising control day. The samples were analyzed for testosterone, cortisol (C), and immunoglobulin A concentrations. The total volume of load lifted differed among the 3 schemes (SHS > ES > PS, p < 0.05). Postexercise C concentrations increased after all schemes, compared to control values (p < 0.05). In the SHS, the postexercise C response was also greater than pre-exercise data (p < 0.05). The current findings confirm that high-volume resistance exercise schemes can stimulate greater C secretion because of higher metabolic demand. In terms of practical applications, acute changes in C may be used to evaluate the metabolic demands of different resistance exercise schemes, or as a tool for monitoring training strain.  相似文献   

16.
 This study examined the effects of negative air ion exposure on the human cardiovascular and endocrine systems during rest and during the recovery period following moderate endurance exercise. Ten healthy adult men were studied in the presence (8,000–10,000 cm−3) or absence (200–400 cm−3) of negative air ions (25° C, 50% humidity) after 1 h of exercise. The level of exercise was adjusted to represent a 50–60% load compared with the subjects’ maximal oxygen uptake, which was determined using a bicycle ergometer in an unmodified environment (22–23° C, 30–35% humidity, 200–400 negative air ions·cm−3). The diastolic blood pressure (DBP) values during the recovery period were significantly lower in the presence of negative ions than in their absence. The plasma levels of serotonin (5-HT) and dopamine (DA) were significantly lower in the presence of negative ions than in their absence. These results demonstrated that exposure to negative air ions produced a slow recovery of DBP and decreases in the levels of 5-HT and DA in the recovery period after moderate endurance exercise. 5-HT is thought to have contributed to the slow recovery of DBP. Received: 29 July 1996 / Revised: 3 April 1997 / Accepted: 28 October 1997  相似文献   

17.
To examine the influence of light exercise on cardiac responses during recovery from exercise, we measured heart rate (HR), stroke volume (SV), and cardiac output ( c) in five healthy untrained male subjects in an upright position before, during, and after 10-min steady-state cycle exercise at an exercise intensity of 170 W, corresponding to a mean of 68 (SD 4)% of maximal oxygen uptake. The recovery phase was evaluated separately for three different conditions: 10 min of complete rest (passive recovery), 7 min of pedalling at 20-W exercise intensity followed by 3 min of rest (partially active recovery), and 7 min of pedalling at 40-W exercise intensity followed by 3 min of rest (partially active recovery), on an upright cycle ergometer. The time courses of decreases in HR in the two active recovery phases at different exercise intensities were almost identical to those in the passive recovery phase. However, the subsequent HR reductions during the rest after active recovery at 20 W and at 40 W were mean 7.5 (SD 4.4) and mean 10.0 (SD 3.1) beats · min−1, respectively, both of which were significantly larger (P<0.05 and P<0.005) than the corresponding reduction [1.4 (SD 2.5) beats · min−1] for passive recovery. The SV values at the two exercise intensities during the active recovery periods were maintained at levels similar to that during 170-W steady-state exercise. In contrast, the SV during passive recovery decreased gradually to a level significantly below the initial baseline level at rest before exercise (P<0.05). The resultant time courses of CO values during active recovery were significantly higher (each P<0.05) than that during passive recovery. It was concluded from these findings that light post-exercise physical activity plays an important role in facilitating the venous return from the muscles and in restoring the elevated HR to the pre-exercise resting level. Accepted: 17 September 1997  相似文献   

18.
Pb胁迫条件下3种叶菜的生长和生理响应及其抗性差异   总被引:3,自引:0,他引:3  
采用水培法研究了不同浓度(24、120和240 μmol·L-1)Pb胁迫条件下花芽甜麦菜(Sonchus lingiaus)、碧绿粗苔菜心(Brassica chinensis var. utilis)和空心菜(Ipomoea aquatica)生长和部分生理指标(包括游离脯氨酸含量及SOD、POD和CAT活性)以及Pb吸收量的变化,并通过隶属函数法对3种叶菜的Pb抗性进行了综合比较.结果表明:Pb胁迫对3种叶菜单株地上部分鲜质量总体上影响不明显.随Pb胁迫浓度的提高,3种叶菜地上部分和地下部分Pb含量逐渐升高,且地下部分Pb含量均高于地上部分,Pb转运系数则显著降低(P<0.05);按Pb含量由高至低依次为空心菜、碧绿粗苔菜心、花芽甜麦菜.在Pb胁迫条件下,花芽甜麦菜中游离脯氨酸含量均略低于对照但差异不显著(P>0.05),空心菜中游离脯氨酸含量均显著高于对照,而碧绿粗苔菜心的游离脯氨酸含量仅在120和240 μmol·L-1Pb胁迫条件下显著高于对照.随Pb胁迫浓度提高,3种叶菜SOD活性呈逐渐增加的趋势,但总体上与对照差异不显著;经Pb胁迫处理后,3种叶菜的CAT活性或高于或低于对照,但在240 μmol·L-1Pb胁迫条件下花芽甜麦菜的CAT活性显著低于对照、碧绿粗苔菜心和空心菜的CAT活性显著高于对照;Pb胁迫后3种叶菜的POD活性未表现出明显的规律.经过综合评价,3种叶菜对Pb的抗性由大至小依次为碧绿粗苔菜心、空心菜、花芽甜麦菜.经过主成分分析,确定3种叶菜的游离脯氨酸含量、SOD和CAT活性为Pb胁迫的响应因子.  相似文献   

19.
20.
Previous studies investigating the impact of circadian rhythms on physiological variables during exercise have yielded conflicting results. The purpose of the present investigation was to examine maximal aerobic exercise performance, as well as the physiological and psychophysiological responses to exercise, at four different intervals (0800 hours, 1200 hours, 1600 hours, and 2000 hours) within the segment of the 24-h day in which strenuous physical activity is typically performed. Ten physically fit, but untrained, male university students served as subjects. The results revealed that exercise performance was unaffected by chronobiological effects. Similarly, oxygen uptake, minute ventilation and heart rate showed no time of day influences under pre-, submaximal, and maximal exercise conditions. Ratings of perceived exertion were unaffected by time of day effects during submaximal and maximal exercise. In contrast, rectal temperature exhibited a significant chronobiological rhythm under all three conditions. Under pre- and submaximal exercise conditions, significant time of day effects were noted for respiratory exchange ratio, while a significant rhythmicity of blood pressure was evident during maximal exercise. However, none of these physiological variables exhibited significant differential responses (percent change from pre-exercise values) to the exercise stimulus at any of the four time points selected for study. Conversely, resting plasma lactate levels and lactate responses to maximal exercise were found to be significantly sensitive to chronobiological influences. Absolute post-exercise plasma norepinephrine values, and norepinephrine responses to exercise (percent change from pre-exercise values), also fluctuated significantly among the time points studied. In summary, these data suggest that aerobic exercise performance does not vary during the time frame within which exercise is normally conducted, despite the fact that some important physiological responses to exercise do fluctuate within that time period. Accepted: 18 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号