首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aims:  To investigate the circulation of predominant sourdough lactic acid bacteria (LAB) species in the production environment of two Belgian artisan sourdough bakeries.
Methods and Results:  Isolates were collected from sourdoughs, flour, hands of the baker and air in the bakery setting and taxonomically characterized using repetitive element sequence-based PCR fingerprinting, pheS and/or 16S rRNA gene sequencing and amplified fragment length polymorphism (AFLP) analysis. In parallel, PCR-DGGE (denaturing gradient gel electrophoresis) analysis of V3-16S rDNA amplicons was applied to visualize the predominant bacterial population in the sourdoughs and the corresponding bakery environment (flour, hands of the baker, air and bakery equipment). Both approaches revealed that sourdoughs produced at D01 and D10 were mainly dominated by Lactobacillus spicheri and L. plantarum and by L. sanfranciscensis , respectively, and that these LAB species also circulated in the corresponding bakery environment. Furthermore, AFLP fingerprinting demonstrated that sourdough and bakery environment isolates of these species were genetically indistinguishable. For more sensitive source-tracking, SYBR Green-based real-time PCR assays were developed using species-specific primers targeting the pheS gene of L. plantarum and L. sanfranciscensis, detected in air samples from D01 and D10, respectively.
Conclusions:  The results obtained in this study indicate that specific strains of LAB persist in artisan doughs over years and circulate in the bakery environment. Furthermore, the importance of air as a potential carrier of LAB in artisan bakery environments was demonstrated.
Significance and Impact of the Study:  PheS -based real-time PCR can be used to detect, quantify and/or monitor specific LAB species (e.g. starter cultures) in sourdough and bakery environment samples.  相似文献   

3.
Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 °C, while incubation at 40 °C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51000 units ml–1 and 25000 units ml–1, respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.  相似文献   

4.
Bacteriocin production by spray-dried lactic acid bacteria   总被引:11,自引:0,他引:11  
AIMS: Cell survival and antagonistic activity against Listeria innocua, Listeria monocytogenes and Staphylococcus aureus were investigated after spray-drying three bacteriocin-producing strains of lactic acid bacteria: Carnobacterium divergens, Lactobacillus salivarius and Lactobacillus sakei. METHODS AND RESULTS: Bacterial cell concentrates were spray-dried and stored at 4 degrees C and 18 degrees C and 0.3% ERH (equilibrium relative humidity). Enumeration and antagonistic activity were evaluated before and after spray-drying and at regular intervals during storage. CONCLUSIONS: A higher survival rate was obtained when survival was performed at 4 degrees C. With the exception of Carnobacterium divergens which lost the inhibitory activity against Staph. aureus after drying, antagonistic production was not affected by the process nor by the storage. Of the three species studied, Lact. salivarius showed the highest resistance to the spray-drying and storage processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Spray-drying is a potentially useful process for large scale production of dried powders containing viable organisms with antagonistic activity against pathogens.  相似文献   

5.
The influencing factors of extracellular polysaccharide (EPS) produced from a strain of lactic acid bacteria (LAB L15) were studied by using the phenol-H2SO4 method. It was demonstrated that the strain produced EPS at the most amount when it was incubated for 40–48 h and when the pH value was 4 under 30°C. Glucose was the most suitable carbon source for LAB-producing EPS. The rough EPS was obtained from L15 culture after centrifugation, dialysis, deprotein, decoloration, and ethanol-precipitation. The sample was at least composed of two polysaccharides that were completely different in molecular weight and the amount. The purified EPS was passed through the SephadexG-200 column and it showed that it was a sample purified by thin layer chromatography. __________ Translated from Microbiology, 2005, 32(4): 85–90 [译自: 微生物学通报, 2005, 32(4): 85–90]  相似文献   

6.
7.
乳酸菌风味代谢物质的基因调控   总被引:3,自引:0,他引:3  
乳酸菌的主要风味代谢物质包括丁二酮,乙醛以及各种氨基酸。利用基因工程和代谢工程的相关技术提高乙醛和丁二酮产量,是当前乳酸菌研究的热点之一。乙醛的代谢调控主要是针对丝氨酸羟甲基转移酶的表达进行调控,或是针对丙酮酸脱羧酶和NADH氧化酶的表达采用联合调控策略;而丁二酮的代谢调控则主要集中于乳酸脱氢酶、NADH氧化酶、α-乙酰乳酸合成酶和α-乙酰乳酸脱羧酶中任意两种关键酶基因间的联合调控,并且存在进行乳酸脱氢酶,α-乙酰乳酸合成酶和α-乙酰乳酸脱羧酶3种关键酶基因联合调控的可行性。  相似文献   

8.
9.
It can be expected that extracellular electron transfer to regenerate NAD+ changes the glucose metabolism of the homofermentative lactic acid bacteria. In this work, the glucose metabolism of Lactobacillusplantarum and Lactococcus lactis was examined in resting cells with 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as the electron transfer mediator and ferricyanide (Fe(CN)6(3-)) as the extracellular electron acceptor. NADH in the cells was oxidized by ACNQ with the aid of diaphorase, and the reduced ACNQ was reoxidized with Fe(CN)6(3-). The extracellular electron transfer system promoted the generation of pyruvate, acetate, and acetoin from glucose, and restricted lactate production. Diaphorase activity increased when cultivation was aerobic, and this increased the concentrations of pyruvate, acetate, and acetoin relative to the concentration of lactate to increase in the presence of ACNQ and Fe(CN)6(3-)  相似文献   

10.
The stability, pH-dependence and kinetic properties of the Mn2+ and FDP-activated NAD-dependent lactic acid dehydrogenases from Lactobacillus casei ssp. casei (ATCC 393) and L. curvatus (DSM) 20010) were studied after the enzymes were purified to homogeneity by affinity chromatography. Both enzymes are virtually unidirectional, catalysing efficiently only the reduction of pyruvate. They are similar with respect to the effector requirement and pH-optimum. They differ, however, in their electrophoretic mobility, heat stability, pH-dependence of the Mn2+ requirement and several kinetic properties. It is suggested that most of these differences are caused by differences of the negative charges in the vicinity of the FDP-binding site or the site responsible for the interaction of the subunits of the enzymatically active oligomeres.Abbreviations l-LDH l-Lactic acid dehydrogenase - FDP Fructose-1,6-bisphosphate - DTE Dithioerythrol AddendumIn the case of the L. casei-LDH the shape of the NADH saturation curve is not changed by omitting the effectors FDP and Mn 2+. The K M under these conditions is 3 fold higher (10.10 –5 M).  相似文献   

11.

Background

Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics.

Results

Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n?=?11), Pediococcus (n?=?2) and Weissella (n?=?2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3?h) and intestinal (4?h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose.

Conclusions

The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties.
  相似文献   

12.
Responses of lactic acid bacteria to oxygen   总被引:30,自引:0,他引:30  
Abstract A small number of flavoprotein oxidase enzymes are responsible for the direct interaction of lactic acid bacteria (LAB) with oxygen; hydrogen peroxide or water are produced in these reactions. In some cultures exposed to oxygen, hydrogen peroxide accumulates to inhibitory levels.
Through these oxidase enzymes and NADH peroxidase, O2 and H2O2 can accept electrons from sugar metabolism, and thus have a sparing effect on the use of metabolic intermediates, such as pyruvate or acetaldehyde, as electron acceptors. Consequently, sugar metabolism in aerated cultures of LAB can be substantially different from that in unaerated cultures. Energy and biomass yields, end-products of sugar metabolism and the range of substrates which can be metabolised are affected.
Lactic acid bacteria exhibit an inducible oxidative stress response when exposed to sublethal levels of H2O2. This response protects them if they are subsequently exposed to lethal concentrations of H2O2. The effect appears to be related to other stress responses such as heat-shock and is similar, in some but not all respects, to that previously reported for enteric bacteria.  相似文献   

13.
Anchoring of proteins to lactic acid bacteria   总被引:12,自引:0,他引:12  
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.  相似文献   

14.
Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol.  相似文献   

15.
16.
17.
Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.  相似文献   

18.
Biogenic amine production by lactic acid bacteria isolated from cider   总被引:1,自引:0,他引:1  
AIMS: To study the occurrence of histidine, tyrosine and ornithine decarboxylase activity in lactic acid bacteria (LAB) isolated from natural ciders and to examine their potential to produce detrimental levels of biogenic amines. METHODS AND RESULTS: The presence of biogenic amines in a decarboxylase synthetic broth and in cider was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Among the 54 LAB strains tested, six (five lactobacilli and one oenococci) were biogenic amine producers in both media. Histamine and tyramine were the amines formed by the LAB strains investigated. Lactobacillus diolivorans were the most intensive histamine producers. This species together with Lactobacillus collinoides and Oenococcus oeni also seemed to produce tyramine. No ability to form histamine, tyramine or putrescine by Pediococus parvulus was observed, although it is a known biogenic amine producer in wines and beers. CONCLUSIONS: This study demonstrated that LAB microbiota growing in ciders had the ability to produce biogenic amines, particularly histamine and tyramine, and suggests that this capability might be strain-dependent rather than being related to a particular bacterial species. SIGNIFICANCE AND IMPACT OF THE STUDY: Production of biogenic amines by food micro-organisms has continued to be the focus of intensive study because of their potential toxicity. The main goal was to identify the microbial species capable of producing these compounds in order to control their presence and metabolic activity in foods.  相似文献   

19.
AIMS: The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. METHODS AND RESULTS: Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. CONCLUSIONS: The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. SIGNIFICANCE AND IMPACT OF THE STUDY: Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.  相似文献   

20.
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号