首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Protein kinase C (PKC) has been implicated in lipopolysaccharide (LPS)-induced endothelial cell (EC) monolayer permeability. Myristoylated alanine-rich C kinase substrate (MARCKS), as a specific PKC substrate, appears to mediate PKC signaling by PKC-dependent phosphorylation of MARCKS and subsequent modification of the association of MARCKS with filamentous actin and calmodulin (CaM). Therefore, in the present study, we investigated LPS-induced MARCKS phosphorylation in bovine pulmonary artery EC (BPAEC). LPS potentiated MARCKS phosphorylation in BPAEC in a time- and dose-dependent manner. The PKC inhibitor, calphostin C, significantly decreased LPS-induced phosphorylation of MARCKS. In addition, downregulation of PKC with phorbol 12-myristate 13-acetate (PMA) did not affect the LPS-induced MARCKS phosphorylation, suggesting that LPS and PMA activate different isoforms of PKC. Pretreatment with SB203580, a specific inhibitor of p38 MAP kinase, or genistein, a tyrosine kinase inhibitor, prevented LPS-induced MARCKS phosphorylation. Phosphorylation at appropriate sites will induce translocation of MARCKS from the cell membrane to the cytosol. However, LPS, in contrast to PMA, did not generate MARCKS translocation in BPAEC, suggesting that MARCKS translocation may not play a role in LPS-induced actin rearrangement and EC permeability. LPS also enhanced both thrombin- and PMA-induced phosphorylation of MARCKS, suggesting that LPS was able to prime these signaling pathways in BPAEC. Because the CaM-dependent phosphorylation of myosin light chains (MLC) results in EC contraction, we studied the effect of LPS on MLC phosphorylation in BPAEC. LPS induced diphosphorylation of MLC in a time-dependent manner, which occurred at lower doses of LPS, than those required to induce MARCKS phosphorylation. In addition, there was no synergism between LPS and thrombin in the induction of MLC phosphorylation. These data indicate that MLC phosphorylation is independent of MARCKS phosphorylation. In conclusion, LPS stimulated MARCKS phosphorylation in BPAEC. This phosphorylation appears to involve activation of PKC, p38 MAP kinase, and tyrosine kinases. Further studies are needed to explore the role of MARCKS phosphorylation in LPS-induced actin rearrangement and EC permeability.  相似文献   

2.
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.  相似文献   

3.
Yan M  Cheng C  Jiang J  Liu Y  Gao Y  Guo Z  Liu H  Shen A 《Neurochemical research》2009,34(5):1002-1010
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.  相似文献   

4.
We isolated cDNA of the mouse homologue of the src-suppressed C kinase substrate (SSeCKS) and analyzed the effects of lipopolysaccharide (LPS) injection on the tissue expression pattern of this protein. Northern blotting analysis showed that SSeCKS mRNA was expressed abundantly in the testis but at undetectable levels in other tissues of untreated control mice. Intraperitoneal administration of LPS strongly induced SSeCKS mRNA expression in the lung, heart, liver, spleen, kidney, lymph node, adrenal gland, and pituitary gland, as well as in the brain. In lung and spleen, the SSeCKS mRNA levels increased almost 10-fold at 1 hr after LPS injection and persisted at high levels until 4 hr. Both in situ hybridization and immunohistochemical studies revealed that LPS administration conspicuously elevated expression of SSeCKS mRNA and protein in vascular endothelial cells of several organs. Ectopic expression of SSeCKS caused loss of cytoplasmic F-actin fibers in the mouse endothelial cell line LEII. These results indicate that SSeCKS is one of the major LPS-responsive proteins and may participate in alteration of cytoskeletal architecture in endothelial cells during inflammation.  相似文献   

5.
SSeCKS, first isolated as a G(1)-->S inhibitor that is downregulated in src- and ras-transformed cells, is a major cytoskeleton-associated PKC substrate with tumor suppressor and kinase-scaffolding activities. Previous attempts at constitutive expression resulted in cell variants with truncated ectopic SSeCKS products. Here, we show that tetracycline-regulated SSeCKS expression in NIH 3T3 cells induces G(1) arrest marked by extracellular signal-regulated kinase 2-dependent decreases in cyclin D1 expression and pRb phosphorylation. Unexpectedly, the forced reexpression of cyclin D1 failed to rescue SSeCKS-induced G(1) arrest. Confocal microscopy analysis revealed cytoplasmic colocalization of cyclin D1 with SSeCKS. Because the SSeCKS gene encodes two potential cyclin-binding motifs (CY) flanking major in vivo protein kinase C (PKC) phosphorylation sites (Ser(507/515)), we addressed whether SSeCKS encodes a phosphorylation-dependent cyclin scaffolding function. Bacterially expressed SSeCKS-CY bound cyclins D1 and E, whereas K-->S mutations within either CY motif ablated binding. Activation of PKC in vivo caused a rapid translocation of cyclin D1 to the nucleus. Cell permeable, penetratin-linked peptides encoding wild-type SSeCKS-CY, but not K-->S or phospho-Ser(507/515) variants, released cyclin D1 from its cytoplasmic sequestration and induced higher saturation density in cyclin D1-overexpressor cells or rat embryo fibroblasts. Our data suggest that SSeCKS controls G(1)-->S progression by regulating the expression and localization of cyclin D1. These data suggest that downregulation of SSeCKS in tumor cells removes gating checkpoints for saturation density, an effect that may promote contact independence.  相似文献   

6.
The product of the SSeCKS/GRAVIN/AKAP12 gene ("SSeCKS") is a major protein kinase (PK) C substrate that exhibits tumor- and metastasis-suppressing activity likely through its ability to scaffold multiple signaling mediators such as PKC, PKA, cyclins, calmodulin, and Src. Although SSeCKS and PKCα bind phosphatidylserine, we demonstrate that phosphatidylserine-independent binding of PKC by SSeCKS is facilitated by two homologous SSeCKS motifs, EG(I/V)(T/S)XWXSFK(K/R)(M/L)VTP(K/R)K(K/R)X(K/R)XXXEXXXE(E/D) (amino acids 592-620 and 741-769). SSeCKS binding to PKCα decreased kinase activity and was dependent on the two PKC-binding motifs. SSeCKS scaffolding of PKC was increased in confluent cell cultures, correlating with significantly increased SSeCKS protein levels and decreased PKCα activity, suggesting a role for SSeCKS in suppressing PKC activation during contact inhibition. SSeCKS-null mouse embryo fibroblasts displayed increased relative basal and phorbol ester (phorbol 12-myristate 13-acetate)-induced PKC activity but were defective in phorbol 12-myristate 13-acetate-induced actin cytoskeletal reorganization and cell shape change; these responses could be rescued by the forced expression of full-length SSeCKS but not by an SSeCKS variant deleted of its PKC-binding domains. Finally, the PKC binding sites in SSeCKS were required to restore cell rounding and/or decreased apoptosis in phorbol ester-treated LNCaP, LNCaP-C4-2, and MAT-LyLu prostate cancer cells. Thus, PKC-mediated remodeling of the actin cytoskeleton is likely regulated by the ability of SSeCKS to control PKC signaling and activity through a direct scaffolding function.  相似文献   

7.
Chronic inflammation incited by bacteria in the saccular lung of premature infants contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). LPS-mediated type II alveolar epithelial cell (AEC) injury induces the expression of pro-inflammatory cytokines that trigger pulmonary neutrophil influx, alveolar matrix degradation and lung remodeling. We hypothesized that NADPH oxidase (Nox)-dependent mechanisms mediate LPS-induced cytokine expression in AEC. We examined the role of p47phox in mediating LPS-dependent inflammatory cytokine expression in A549 cells (which exhibit phenotypic features characteristic of type II AEC) and elucidated the proximal signaling events by which Nox is activated by LPS. LPS-induced ICAM-1 and IL-8 expression was associated with increased superoxide formation in AEC. LPS-mediated oxidative stress and cytokine expression was inhibited by apocynin and augmented by PMA demonstrating that Nox-dependent redox signaling regulates LPS-dependent pro-inflammatory signaling in AEC. In LPS-treated cells, p47phox translocated from the cytoplasm to the perinuclear region and co-localized with gp91phox. LPS also induced a temporal increase in p47phox serine304 phosphorylation in AEC. While inhibition of classical PKC and novel PKC with calphostin and rottlerin did not inhibit ICAM-1 or IL-8 expression, the myristolyated PKCζ pseudosubstrate peptide (a specific inhibitor of PKCζ) inhibited LPS-induced cytokine expression in AEC. Inhibition of PKCζ also attenuated LPS-mediated p47phox phosphorylation and perinuclear translocation in AEC. Consistent with these data, LPS activated PKCζ in AEC as evidenced by increased threonine410 phophorylation. We conclude that PKCζ-mediated p47phox activation regulates LPS-dependent cytokine expression in AEC. Selective inhibition of PKCζ or p47phox might attenuate LPS-mediated inflammation and alveolar remodeling in BPD.  相似文献   

8.
Src-suppressed C kinase substrate (SSeCKS), a protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein. In addition, β-1,4 Galactosyltransferase-I (β-1,4-GalT-I) also plays an important role in the inflammation reactions of nervous system. It was reported that both SSeCKS and β-1,4-GalT-I were involved in the LPS-induced tumor necrosis factor-alpha (TNF-α) expression in rat primary astrocytes. However, the functional interaction between SSeCKS and β-1,4-GalT-I in the LPS-induced TNF-α secretion remains unclear. Therefore, in this study, using the inflammation model of astrocytes treated by LPS in vitro, we found that the changed expressions of SSeCKS and β-1,4-GalT-I participated in LPS-induced TNF-α secretion through p38, JNK, and ERK signal transduction pathways in rat primary astrocytes. Knockdown by small-interfering RNAs (siRNAs) or overexpression of SSeCKS and β-1,4-GalT-I could influence Mitogen-activated protein kinases (MAPKs) signaling pathways activation and TNF-α secretion. Besides, we confirmed that knockdown of SSeCKS could prevent the induction of β-1,4-GalT-I in this process. Inversely, β-1,4-GalT-I had no significant effect on SSeCKS expression in the same way. In summary, our data indicated that SSeCKS could regulate LPS-induced TNF-α secretion through β-1,4-GalT-I in rat primary astrocytes.  相似文献   

9.
Role of MARCKS in regulating endothelial cell proliferation   总被引:2,自引:0,他引:2  
Myristoylated alanine-rich C kinase substrate (MARCKS), as a specificprotein kinase C (PKC) substrate, mediates PKC signaling through itsphosphorylation and subsequent modification of its association withfilamentous actin (F-actin) and calmodulin (CaM). PKC has long beenimplicated in cell proliferation, and recent studies have suggestedthat MARCKS may function as a cell growth suppressor. Therefore, in thepresent study, we investigated MARCKS protein expression, distribution,and phosphorylation in preconfluent and confluent bovine pulmonarymicrovascular endothelial cells (BPMEC) in the presence or absence ofthe vascular endothelial growth factor (VEGF). In addition, we examinedfunctional alterations of MARCKS in these cells by studying theassociation of MARCKS with F-actin and CaM-dependent myosin light chain(MLC) phosphorylation. Our results indicate that MARCKS protein isdownregulated during BPMEC proliferation. Decreased MARCKSassociation with F-actin, increased actin polymerization, andCaM-dependent MLC phosphorylation appear to mediate cell shape changesand motility during BPMEC growth. In contrast, VEGF stimulated MARCKSphosphorylation without alteration of protein expression during BPMECproliferation, which may result in reduced interaction between MARCKSand actin or CaM, leading to actin reorganization and MLCphosphorylation. Our data suggest a regulatory role of MARCKS duringendothelial cell proliferation.

  相似文献   

10.
11.
During Gram-negative sepsis bacterial LPS induces endothelial cell contraction, actin reorganization, and loss of endothelial integrity by an unknown signal mechanism. In this study, we provide evidence that LPS-stimulation of endothelial cells (HUVEC) decreases myosin light chain (MLC) phosphatase, resulting in an increase in MLC phosphorylation followed by cell contraction. All of these LPS effects could be blocked by the Rho-GTPase inhibitor C3 transferase from Clostridium botulinum or the Rho kinase inhibitor Y-27632. These data suggest that LPS induces MLC phosphorylation via Rho/Rho kinase-mediated inhibition of MLC phosphatase in HUVEC. Furthermore, we observed that cAMP-elevating drugs, known to exert a vasoprotective function, mimicked the effects of C3 transferase and Y-27632, i.e., inhibited LPS-induced MLC phosphatase inactivation and MLC phosphorylation. cAMP elevation did not inhibit myosin phosphorylation induced by constitutively active V14Rho or the MLC phosphatase inhibitor calyculin and did not induce phosphorylation of RhoA in HUVEC, indicating inhibition of an upstream regulator of Rho/Rho kinase. Taken together, Rho/Rho kinase appears to be a central target for inflammatory mediators causing endothelial cell contraction such as bacterial toxins, but also for vasoprotective molecules elevating intracellular cAMP.  相似文献   

12.
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells.  相似文献   

13.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.  相似文献   

14.
15.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.  相似文献   

16.
SSeCKS/Gravin/AKAP12 (“SSeCKS”) encodes a cytoskeletal protein that regulates G1 → S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCα. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553–900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.  相似文献   

17.
Lipopolysaccharide (LPS) has been shown to up-regulate the expression of vascular cell adhesion molecule (VCAM)-1 which contributes to the occurrence of airway inflammatory diseases. Genetic analysis reveals the existence of activator protein-1 (AP-1) binding site on VCAM-1 promoter region. However, the role of AP-1 in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs) is not known. Here, we show that LPS increased VCAM-1 expression and adhesiveness of HTSMCs through AP-1, since pretreatment with an AP-1 inhibitor tanshinone attenuated LPS-induced VCAM-1 expression and leukocytes adhesion. The implication of AP-1 in LPS-induced VCAM-1 expression was confirmed by animal studies showing that pretreatment of mice with tanshinone attenuated LPS-induced VCAM-1 mRNA expression in airway tissues and accumulation of leukocytes in bronchoalveolar lavage. By using the pharmacological inhibitors and transfection with siRNA of PKC, p42, p38, or JNK2, LPS-induced expression of c-Fos was mediated through protein kinase C (PKC), p42/p44 MAPK and p38 MAPK. While, c-Jun expression was mediated through PKC and mitogen-activated protein kinases (MAPKs, p42/p44 MAPK, p38 MAPK and JNK) in HTSMCs. Pretreatment with the inhibitors of PKCs or MAPKs attenuated LPS-stimulated nuclear translocation and VCAM-1 promoter binding abilities of AP-1, which attenuated promoter activity and gene expression of VCAM-1 and the adhesiveness between HTSMCs and leukocytes. These results indicated that differential regulation of AP-1 through PKCs-dependent MAPKs activation plays central roles in LPS-induced VCAM-1 expression. The altered modulation of this axis with inhibitors or siRNAs may contribute to the improvement of airway inflammatory diseases.  相似文献   

18.
Src-suppressed C kinase substrate (SSeCKS), an in vivo and in vitro protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein which markedly upregulated in several organs, including brain, lung, heart, kidney etc., indicating a possible role of SSeCKS in inflammatory process. However, the expression and biological function of SSeCKS during neuronal inflammation remains to be elucidated, so we established an inflammatory model injected with LPS to investigate the gene expression patterns of SSeCKS in neural tissues by using TaqMan quantitative real-time PCR and immunohistochemistry in rat. Real-time PCR showed that LPS stimulated the expression of SSeCKS mRNA in a dose- and time-dependent manner in sciatic nerves, spinal cords and dorsal root ganglions. Immunohistochemistry showed that SSeCKS colocalized with nerve fibers in sciatic nerve after LPS administration, but there was no colocalization between SSeCKS and Schwann cells. In addition, SSeCKS colocalized with neurons which existed in dorsal root ganglions and spinal cords. These findings indicated that SSeCKS might play some important roles in sciatic nerve fibers and neurons in spinal cords and dorsal root ganglions after LPS injection.  相似文献   

19.
20.
Bacterial lipopolysaccharide (LPS) influences pulmonary vascular endothelial barrier function in vitro. We studied whether LPS regulates endothelial barrier function through actin reorganization. Postconfluent bovine pulmonary artery endothelial cell monolayers were exposed to Escherichia coli 0111:B4 LPS 10 ng/ml or media for up to 6 h and evaluated for: (1) transendothelial 14C-albumin flux, (2) F-actin organization with fluorescence microscopy, (3) F-actin quantitation by spectrofluorometry, and (4) monomeric G-actin levels by the DNAse 1 inhibition assay. LPS induced increments in 14C-albumin flux (P < 0.001) and intercellular gap formation at ≥ 2–6 h. During this same time period the endothelial F-actin pool was not significantly changed compared to simultaneous media controls. Mean (±SE) G-actin (μg/mg total protein) was significantly (P < 0.002) increased compared to simultaneous media controls at 2, 4, and 6 h but not at 0.5 or 1 h. Prior F-actin stabilization with phallicidin protected against the LPS-induced increments in G-actin (P = 0.040) as well as changes in barrier function (P < 0.0001). Prior protein synthesis inhibition unmasked an LPS-induced decrement in F-actin (P = 0.0044), blunted the G-actin increment (P = 0.010), and increased LPS-induced changes in endothelial barrier function (P < 0.0001). Therefore, LPS induces pulmonary vascular endothelial F-actin depolymerization, intercellular gap formation, and barrier dysfunction. Over the same time period, LPS increased total actin (P < 0.0001) and new actin synthesis (P = 0.0063) which may be a compensatory endothelial cell response to LPS-induced F-actin depolymerization. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号