首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.  相似文献   

2.
The accessible surface areas of 58 monomeric and dimeric proteins, when measured in the crystalline environment, are found to be simply related to molecular weight. The loss of accessible surface when the proteins go from a free to their crystalline environment is well defined, implying that the hydrophobic interaction, which has been found to contribute to protein folding and stability in living systems, also contributes to protein crystal stability.  相似文献   

3.
本研究主要是探讨Piwil2、Stat3、Bcl-2蛋白在不育的雄性小鼠中的表达量及三者之间的表达位置相关性。取雄性昆明种小鼠60只,随机分为实验组与对照组,每组30只。实验组采用雷公藤多苷药物灌胃造小鼠不育模型28 d;对照组按照同样剂量的生理盐水进行灌胃,持续时间及频次同实验组。造模后将两组雄性小鼠分别与雌性小鼠交配;再处死雄性小鼠取出两组的睾丸组织,采用免疫组织化学染色法和蛋白印迹检测法分别检测样本中Piwil2、Stat3及Bcl-2蛋白的表达状况。将实验组与对照组的检测结果进行比较,观察两组的蛋白表达差异性及三个蛋白表达的相关性。H.E染色显示,实验组小鼠睾丸组织生精小管结构与对照组相比,明显被破坏,精原细胞及初次级精母细胞数量明显减少,结合与雌鼠交配后受精能力明显下降的结果,说明不育造模成功。免疫组化(IHC)染色结果显示,实验组Piwil2、Stat3及Bcl-2蛋白的染色程度及阳性细胞数均明显低于对照组(P 0.01)。Western Blot结果同样显示,三种蛋白在实验组的表达量明显低于对照组(Piwil2蛋白P 0.05,Stat3蛋白P 0.05,Bcl-2蛋白P 0.01)。本研究说明,Piwil2、Stat3及Bcl-2蛋白在雄性不育小鼠中表达量均显著降低,这三个蛋白对小鼠精子生成及小鼠不育的发生起到重要调节作用。  相似文献   

4.
Lactobacillus surface layers and their applications   总被引:6,自引:0,他引:6  
Surface (S-) layers are crystalline arrays of proteinaceous subunits present as the outermost component of cell wall in several species of the genus Lactobacillus, as well as in many other bacteria and Archaea. Despite the high similarity of the amino acid composition of all known S-layer proteins, the overall sequence similarity is, however, surprisingly small even between the Lactobacillus S-layer proteins. In addition, the typical characteristics of Lactobacillus S-layer proteins, distinguishing them from other S-layer proteins, are small size and high-predicted pI value. Several lactobacilli possess multiple S-layer protein genes, which can be differentially or simultaneously expressed. To date, the characterized functions of Lactobacillus S-layers are involved in mediating adhesion to different host tissues. A few applications for the S-layer proteins of lactobacilli already exist, including their use as antigen delivery vehicles.  相似文献   

5.
Vegetatively expressed insecticidal proteins (VIPs) produced by Bacillus thuringiensis fall into several classes of which the third, VIP3, is known for their activity against several key Lepidopteran pests of commercial broad acre crops and because their mode of action does not overlap with that of crystalline insecticidal proteins. The details of the VIP3 structure and mode of action have remained obscure for the quarter century that has passed since their discovery. In the present article, we report the first crystal structure of a full‐length VIP3 protein. Crystallization of this target required multiple rounds of construct optimization and screening—over 200 individual sequences were expressed and tested. This protein adopts a novel global fold that combines domains with hitherto unreported topology and containing elements seemingly borrowed from carbohydrate‐binding domains, lectins, or from other insecticidal proteins.  相似文献   

6.
Shurki A  Warshel A 《Proteins》2004,56(1):1-10
Globular proteins are characterized by the specific and tight packing of hydrophobic side-chains in the so-called "hydrophobic core." Formation of the core is key in folding, stabilization, and conformational specificity. The critical role of hydrophobic cores in maintaining the highly ordered structures present in natural proteins justifies the tremendous efforts devoted to their redesign. Both experimental and computational combinatorial-based approaches have been reported in the last years as powerful protein design tools. These manage to explore large regions of the sequence/conformational space, allowing the search for alternative protein core arrangements displaying native-like properties. The overall results obtained from core design projects have contributed significantly to our present knowledge of protein folding and function. In addition, core design has worked as a benchmark for the development of ambitious protein design projects that nowadays are allowing the de novo design of novel protein structures and functions.  相似文献   

7.
Redesigning the hydrophobic core of a four-helix-bundle protein.   总被引:13,自引:11,他引:2       下载免费PDF全文
Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with those of wild-type Rop. The equilibrium stability of the repacked proteins to thermal denaturation is enhanced relative to that of the wild-type protein. The rate of chemically induced folding and unfolding of wild-type Rop is extremely slow when compared with other small proteins. Interestingly, although the repacked proteins are more thermally stable than the wild type, their rates of chemically induced folding and unfolding are greatly increased in comparison to wild type. Perhaps as a consequence of this, their equilibrium stabilities to chemical denaturants are slightly reduced in comparison to the wild type.  相似文献   

8.
The secretory granules (trichocysts) of Paramecium are characterized by a highly constrained shape that reflects the crystalline organization of their protein contents. Yet the crystalline trichocyst content is composed not of a single protein but of a family of related polypeptides that derive from a family of precursors by protein processing. In this paper we show that a multigene family, of unusually large size for a unicellular organism, codes for these proteins. The family is organized in subfamilies; each subfamily codes for proteins with different primary structures, but within the subfamilies several genes code for nearly identical proteins. For one subfamily, we have obtained direct evidence that the different members are coexpressed. The three subfamilies we have characterized are located on different macronuclear chromosomes. Typical 23-29 nucleotide Paramecium introns are found in one of the regions studied and the intron sequences are more variable than the surrounding coding sequences, providing gene-specific markers. We suggest that this multigene family may have evolved to assure a microheterogeneity of structural proteins necessary for morphogenesis of a complex secretory granule core with a constrained shape and dynamic properties: genetic analysis has shown that correct assembly of the crystalline core is necessary for trichocyst function.  相似文献   

9.
Surface layers (S-layers) form regular crystalline structures on the outermost surface of many bacteria. Clostridium difficile possesses such an S-layer consisting of two protein subunits. Treatment of whole cells of C. difficile with 5 M guanidine hydrochloride revealed two major proteins of different molecular masses characteristic of the S-layer on SDS-PAGE. In this study 25 isolates were investigated. A high degree of variability in the molecular mass of the two S-layer proteins was evident. Molecular masses ranged from 48 to 56 kDa for the heavier protein and from 37 to 45 kDa for the lighter protein. A further protein component of 70 kDa was detectable in all isolates. No cross-reaction was seen between the two major proteins from isolates that produced different S-layer patterns, and most S-layer proteins from isolates with the same or similar banding patterns did not cross-react. The S-layer proteins, when detected by a combination of Coomassie blue staining and immunoblotting, are a useful marker for phenotyping.  相似文献   

10.
Exploring the function of the genome and the encoded proteins has emerged as a new and exciting challenge in the postgenomic era. Novel technologies come into view that promise to be valuable for the investigation not only of single proteins, but of entire protein networks. Protein microarrays are the innovative assay platform for highly parallel in vitro studies of protein–protein interactions. Due to their flexibility and multiplexing capacity, protein microarrays benefit basic research, diagnosis and biomedicine. This review provides an overview on the basic principles of protein microarrays and their potential to multiplex protein–protein interaction studies.  相似文献   

11.
A previously developed computer program for protein design, RosettaDesign, was used to predict low free energy sequences for nine naturally occurring protein backbones. RosettaDesign had no knowledge of the naturally occurring sequences and on average 65% of the residues in the designed sequences differ from wild-type. Synthetic genes for ten completely redesigned proteins were generated, and the proteins were expressed, purified, and then characterized using circular dichroism, chemical and temperature denaturation and NMR experiments. Although high-resolution structures have not yet been determined, eight of these proteins appear to be folded and their circular dichroism spectra are similar to those of their wild-type counterparts. Six of the proteins have stabilities equal to or up to 7kcal/mol greater than their wild-type counterparts, and four of the proteins have NMR spectra consistent with a well-packed, rigid structure. These encouraging results indicate that the computational protein design methods can, with significant reliability, identify amino acid sequences compatible with a target protein backbone.  相似文献   

12.
There is indirect evidence that the amino acid composition of proteins depends on their dimension. The amino acid composition of a nonredundant set of about 550,000 proteins was determined and it was observed that, in the range of 50-200 residues, the percentage of occurrence of most of the residue types significantly depends on protein dimension. This result should prove useful in analyzing protein sequences and genomics.  相似文献   

13.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

14.
In this paper we present a molecular dynamics (MD) simulation of subtilisin BPN' in a crystalline environment containing four protein molecules and solvent. Conformational and dynamic properties of the molecules are compared with each other and with respect to the X-ray structure to test the validity of the force field. The agreement between simulated and experimental structure using the GROMOS force field is better than that obtained in the literature using other force fields for protein crystals. The overall shape of the molecule is well preserved, as is the conformation of alpha-helices and beta-strands. Structural differences are mainly found in loop regions. Solvent networks found in the X-ray structure were reproduced by the simulation, which was unbiased with respect to the crystalline hydration structure. These networks seem to play an important role in the stability of the protein; evidence of this is found in the structure of the active site. The weak ion binding site in the X-ray structure of subtilisin BPN' is occupied by a monovalent ion. When a calcium ion is placed in the initial structure, three peptide ligands are replaced by 5 water ligands, whereas a potassium ion retains (in part) its original ligands. Existing force fields yield a reliable method to probe local structure and short-time dynamics of proteins, providing an accuracy of about 0.1 nm.  相似文献   

15.
Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi‐domain protein system. The simple model system of the two‐domain fusion protein investigated in this work consisted of a well‐folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3‐TrpCage, TrpCage‐PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.  相似文献   

16.
【目的】蛋白磷酸化在丝状真菌细胞对外界纤维素酶诱导信号感应以及信号胞内的传导过程中有着重要的作用,而蛋白磷酸化是由蛋白激酶来完成的。为了挖掘在丝状真菌纤维素酶表达过程中发挥重要作用的激酶基因,对粗糙脉孢菌丝氨酸/苏氨酸家族的61株蛋白激酶单基因突变体的纤维素酶表达分泌情况进行了分析测定。【方法】在以微晶纤维素为唯一碳源的条件下,7株单基因突变体胞外分泌蛋白产量有显著变化,随后,对这7株突变体胞外蛋白进行了详细的SDS-PAGE分析和内切-β-1,4-葡聚糖酶酶活、β-葡萄糖苷酶酶活、外切纤维素酶酶活以及木聚糖酶酶活的测定。【结果】突变株W14、W38、W87和W40胞外分泌蛋白含量提高了30%以上,除了突变株W14外,其它突变体的内切-β-1,4-葡聚糖酶酶活分别显著提高了62%、42%和42%。而突变株W85、W26和W46胞外分泌蛋白含量降低了50%以上,相对应的内切-β-1,4-葡聚糖酶酶活也分别下降了86%、75%和84%。【结论】这些关于粗糙脉孢菌丝氨酸/苏氨酸家族蛋白激酶基因的挖掘,为进一步深入研究蛋白激酶在纤维素酶诱导表达调控中的分子机理奠定了基础。  相似文献   

17.
Plant tropisms are decisively influenced by dynamic adjustments in spatiotemporal distribution of the growth regulators auxin. Polar auxin transport requires activity of PIN-type auxin carrier proteins, with their distribution at the plasma membrane significantly contributing to the directionality of auxin flow. Control of PIN protein distribution involves regulation of their endocytosis and further sorting into the lytic vacuole for degradation and recently, protein ubiquitylation has been demonstrated to control degradative sorting of plasma membrane proteins in plants.1-6 Here we show dynamic adjustments in PIN2 ubiquitylation in gravity-stimulated roots, a response that coincides with establishment of a lateral PIN2 expression gradient. Our results imply that perception and transduction of gravity signals triggers differential ubiquitylation of PIN2, which might feed back on the coordination of auxin distribution in root meristems.  相似文献   

18.
Folding in the endoplasmic reticulum is the limiting step for the biogenesis of most secretory pathway cargo proteins; proteins which fail to fold are initially retained in the endoplasmic reticulum and subsequently often degraded. Mutations that affect secretory protein folding have profound phenotypes irrespective of their direct impact on protein function, because they prevent secretory proteins from reaching their final destination. When unicellular organisms are stressed by fluctuation of temperature or ionic strength, they synthesize high concentrations of small molecules such as trehalose or glycerol to prevent protein denaturation. These osmolytes can also stabilize mutant secretory proteins and allow them to pass secretory protein quality control in the endoplasmic reticulum. Specific ligands and cofactors such as ions, sugars, or peptides have similar effects on specific defective proteins and are beginning to be used as therapeutic agents for protein trafficking diseases.  相似文献   

19.
Diabetic patients have elevated levels of glucose in their blood and other body fluids. This project studied the effect of high-glucose concentrations (HG) on the protein oxidation in cultured lens cells and in crystalline protein solution. In addition, we also examined the effect of HG on the oxidation and turbidity (aggregation) of albumin protein solution. This study also examined whether vitamin B6 [pyridoxine (P), pyridoxamine (PM)] or n-acetylcysteine (NAC) is capable of preventing protein oxidation similar to that seen in cataracts. For cell culture studies, rabbit lens cells were cultured in control or HG medium at 37°C for 2 d. For studies with protein solution, a buffered solution of serum albumin or crystalline protein was incubated with normal glucose (5 mM) or HG (50–100 mM) in a water bath at 37°C for 4 d. All treatments were carried out with and without the addition of P, PM, or NAC. We found significantly higher levels of carbonyl protein (an index of protein oxidation) in HG-treated compared with normal glucose-treated lens cells and in crystalline protein solution. P, PM, and NAC significantly decreased the protein oxidation in lens cells and crystalline protein solution. We also found significantly higher levels of protein oxidation and turbidity (an index of protein aggregation) and its inhibition by P, PM, and NAC in HG-treated compared with normal glucose-treated albumin solution. This suggests that HG can cause the oxidation and modification of proteins in the lens, and that vitamin B6 and NAC supplementation may be helpful in slowing the oxidation of lens proteins. This study explains the cause of early cataract development and the potential benefit of supplementation with vitamin B6 and NAC in the prevention of the development of cataract among the diabetic population.  相似文献   

20.
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号