首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

2.
Triacylglycerol is accumulated by Streptomyces spp. when grown in submerged culture. Ultrastructural studies using transmission electron microscopy (TEM), staining and freeze-fracture/freeze-etch procedures, and light microscopy confirmed the accumulation of neutral lipid by S. lividans and S. coelicolor during the stationary phase and its storage within membrane-bound globular structures within the cytoplasm. These structures were of various sizes and occupied up to approximately 80% of the total cell volume at that time. There was no evidence of such material within cells examined during the early exponential phase of growth. The globules visualised by TEM were electron-transparent since they comprised lipids containing saturated fatty acids that did not react with osmium tetroxide. The globules appeared to be bounded by a single membrane. Received: 6 June 1995 / Accepted: 4 September 1995  相似文献   

3.
Previous investigations have reported that bacterial suspension cultures grow to higher stationary concentrations in space flight than on Earth; however, none of these investigations included extensive ground controls under varied inertial conditions. This study includes extensive controls and cell-growth data taken at several times during lag phase, log phase, and stationary phase of Escherichia coli and Bacillus subtilis. The Marquardt-Levenberg, least-squares fitting algorithm was used to calculate kinetic growth parameters from the logistic bacterial growth equations for space-flight and control growth curves. Space-flight cultures grew to higher stationary-phase concentrations and had shorter lag-phase durations. Also, evidence was found for increased exponential growth rate in space. Received: 27 February 1998 / Received revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

4.
The effects of process conditions and growth kinetics on the production of the bacteriocin sakacin P by Lactobacillus sakei CCUG 42687 have been studied in pH-controlled fermentations. The fermentations could be divided into phases based on the growth kinetics, phase one being a short period of exponential growth, and three subsequent ones being phases of with decreasing specific growth rate. Sakacin P production was maximal at 20 °C. At higher temperatures (25–30 °C) the production ceased at lower cell masses, when less glucose was consumed, resulting in much lower sakacin P concentrations. With similar media and pH, the maximum sakacin P concentration at 20 °C was seven times higher than that at 30 °C. The growth rate increased with increasing concentrations of yeast extract, and the maximum concentration and specific production rate of sakacin P increased concomitantly. Increasing tryptone concentrations also had a positive influence upon sakacin P production, though the effect was significantly lower than that of yeast extract. The maximum sakacin P concentration obtained in this study was 20.5 mg l−1. On the basis of the growth and production kinetics, possible metabolic regulation of bacteriocin synthesis is discussed, e.g. the effects of availability of essential amino acids, other nutrients, and energy. Received: 7 June 1999 / Received revision: 15 September 1999 / Accepted: 17 September 1999  相似文献   

5.
Wolinella succinogenes grows by anaerobic respiration with formate and polysulfide. Polysulfide forms spontaneously from sulfur and sulfide. Here we report that this eubacterium also grows with formate and elemental sulfur under conditions that do not allow polysulfide formation. With the appropriate amount of Fe2+ added to the medium, the concentration of polysulfide was calculated to be 0.4 nM, which is 1/400th of the concentration that of dissolved elemental sulfur. At commensurable growth rates, the growth yield with sulfur was one quarter of that with polysulfide as electron acceptor. The same low growth yield either with sulfur or with polysulfide as electron acceptor was measured for a Δpsr mutant that lacks the genes encoding polysulfide reductase (Psr). Received: 8 June 1995 / Accepted: 12 September 1995  相似文献   

6.
7.
Aspergillus oryzae fermentation extract (Amaferm) was used to stimulate the in vitro growth of the cellulolytic fungus Neocallimastix frontalis EB 188. Soluble and filter-sterilized extract was added either at the start or throughout culture growth. Culture mass, protein secretion and cellulase secretion were measured in stationary test-tubes or round-bottom flasks and a stirred (desktop) fermenter. The soluble extract increased culture mass and protein and cellulase secretion in a dose-dependent manner. Maximum stimulation caused the supernatant cellulase to nearly double (i.e., 87% over controls; P<0.05), cell mass increased by 27% (P<0.05) over controls and secreted protein increased 37% (P<0.05) over controls. The timing of extract addition did not alter the culture response and suggested a recycling of components. The robustness of fungal zoospores used as inoculum, however, greatly influenced the effectiveness of the extract to stimulate secretions. Extracts did not directly influence the pH of the culture medium or the endogenous levels of enzymes. The rate of carbon source utilization and morphology of the fungus were unchanged by soluble-extract additions at any level tested. The extract was inhibitory when added to concentrations exceeding an amount equivalent to 20 g animal-1 day-1. Received: 6 December 1995/Received revision: 7 February 1996/Accepted: 4 March 1996  相似文献   

8.
The effect of some culture variables in the production of β-galactosidase from Escherichia coli in Bacillus subtilis was evaluated. The lacZ gene was expressed in B. subtilis using the regulatory region of the subtilisin gene aprE. The host contained also the hpr2 and degU32 mutations, which are known to overexpress the aprE gene. We found that, when this overproducing B. subtilis strain was grown in mineral medium supplemented with glucose (MMG), β-galactosidase production was partially growth-associated, as 40%–60% of the maximum enzyme activity was produced before the onset of the stationary phase. In contrast, when a complex medium was used, β-galactosidase was produced only at low levels during vegetative growth, whereas it accumulated to high levels during early stationary phase. Compared with the results obtained in complex media, a 20% increase in specific β-galactosidase activity in MMG supplemented with 11.6 g/l glucose was obtained. On the 1-l fermenter scale, a threefold increase in volumetric β-galactosidase activity was obtained when the glucose concentration was varied from 11 g/l to 26 g/l. In addition, glucose feeding during the stationary phase resulted in a twofold increase in volumetric enzyme activity as cellular lysis was prevented. Finally, we showed that oxygen uptake and carbon dioxide evolution rates can be used for on-line determination of the onset of stationary phase, glucose depletion and biomass concentration. Received: 18 April 1996 / Received revision: 27 August 1996 / Accepted: 6 September 1996  相似文献   

9.
Compared with exponential growing bacteria, carbohydrate-starved cells of Enterococcus faecalis exhibit a high level of resistance to sodium hypochlorite with maximal resistance observed in cultures entering stationary phase. Chloramphenicol treatment, at various stages of growing phase, does not abolish the hypochlorite resistance of starved cells. However, Enterococcus faecalis conditioned by low sodium hypochlorite concentrations does not develop tolerance towards a lethal dose of the disinfectant. Two-dimensional gel analysis shows that protein synthesis is drastically turned off by hypochlorite treatment, whereas synthesis of a few proteins is enhanced by a low concentration of this chemical agent. Received: 5 September 1996 / Accepted: 29 October 1996  相似文献   

10.
Candida shehatae were sequentially subjected to aerobic conditions for cellular growth, followed by anaerobic conditions for ethanol production from D-xylose at pH 2.5, 4.5 and 6.0. Ethanol yields increased from 0.25 g/g to 0.37 g/g and xylitol yields decreased from 0.33 g/g to 0.1 g/g as the pH was increased from 2.5 to 6.0. Cell viability, measured by plate counts and methylene blue staining, decreased in all of the fermentations, following the switch from aerobic to anaerobic conditions. However, pH 6.0 was shown to extend cell viability and increase the final ethanol concentration from 45 g/l to 55 g/l, compared to the yield at pH 4.5. Received: 25 April 1995/Received revision: 5 September 1995/Accepted: 20 September 1995  相似文献   

11.
 A ruminal strain of Enterococcus faecalis was characterised with respect to its ability to hydrate oleic acid to 10-hydroxystearic acid. Hydroxy fatty acid was produced after growth had ceased and the carbon source was almost exhausted. Hydroxy fatty acid production was equally rapid whether the inoculum had been grown in the presence of oleic acid or not, and almost complete conversion was achieved when oleic acid was present at a concentration of up to 0.5% (v/v). Incubation under a hydrogen headspace did not result in biohydrogenation of oleic acid. In pH-controlled batch culture the proportion of oleic acid hydrated varied with the pH of incubation, with more hydration at lower pH. Growth was retarded in the presence of 0.1% (v/v) linoleic acid, inhibited by the same concentration of linolenic acid and did not result in the formation of hydrated products from these substrates. If this organism is able to transform oleic acid in the rumen then the only product likely to be formed is 10hydroxystearic acid. Received: 17 July 1995/Received last revision: 24 October 1995/Accepted: 30 October 1995  相似文献   

12.
Cryptococcus curvatus is a yeast with industrial potential because it can grow and accumulate lipid on a very broad range of substrates. In this study we describe growth and lipid accumulation on glycerol in a fed-batch fermentation mode. We performed a fermentation consisting of two phases. The first phase is the biomass production phase in which there is no nutrient limitation except for very short periods of glycerol exhaustion. The substrate feed was controlled by the dissolved oxygen tension. In the second phase nitrogen limitation was introduced, which causes lipid accumulation. This way very high cell densities of 118 g/l in a 50-h fermentation could be reached. With a lipid production rate of 0.59 g lipid l-1h-1, a cellular lipid content of 25% was obtained. The growth and lipid accumulation phase are characterized by different cellular fatty acid compositions. In the growth phase, a relatively high amount of C18:2 (linoleic acid) is present, which is a major component of membrane lipids. C18:0 (stearic acid) and C18:1 (oleic acid) are major constituents of the accumulated triglycerides and therefore the relative amount of C18:2 decreases during the lipid accumulation phase. Received: 19 September 1995/Received revision: 28 December 1995/Accepted: 8 January 1996  相似文献   

13.
The time course of the accumulation of triacylglycerols (TAGs) in Rhodococcus opacus PD630 or of TAGs plus polyhydroxyalkanoates (PHA) in Rhodococcus ruber NCIMB 40126 with gluconate or glucose as carbon source, respectively, was studied. In addition, we examined the mobilization of these storage compounds in the absence of a carbon source. R. opacus accumulated TAGs only after the exhaustion of ammonium in the medium, and, with a fixed concentration of the carbon source, the amounts of TAGs in the cells increased with decreasing concentrations of ammonium in the medium. When these cells were incubated in the absence of an additional carbon source, about 90% of these TAGs were mobilized and used as endogenous carbon source, particularly if ammonium was available. R. ruber accumulated a copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate already during the early exponential growth phase, whereas TAGs were synthesized and accumulated mainly during the late exponential and stationary growth phases. In the stationary growth phase, synthesis of TAGs continued, whereas PHA was partially mobilized. In the absence of an additional carbon source but in the presence of ammonium, mobilization of TAGs started first and was then paralleled by the mobilization of PHA, resulting in an approximately 90% and 80% decrease of these storage compounds, respectively. During the accumulation phase, interesting shifts in the composition of the two storage compounds occurred, indicating that the substrates of the PHA synthase and the TAG synthesizing enzymes were provided to varying extents, depending on whether the cells were in the early or late exponential or in the stationary growth phase. Received: 12 January 2000 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

14.
Two extremely thermophilic archaebacteria, strains OG-1 and SM-2, were isolated from newly discovered deep-sea hydrothermal vent areas in the western Pacific ocean. These strains were cocci, obligately anaerobic Archaea about 0.7–2 μm in diameter. Optimum growth conditions for OG-1 and SM-2 were at 85–90°C (range 60–100°C), pH 6 (range pH 4–8), a NaCl concentration of 3% (range 1–5%), and a nutrient concentration (tryptone plus yeast extract) of 0.2% (range 0.005–5%). Elemental sulfur stimulated the growth rate fourfold. Ammonium slightly stimulated growth. Both tryptone and yeast extract allowed growth as sole carbon sources; these isolates were not able to utilize or grow exclusively on sucrose, glucose, maltose, succinate, pyruvate, propionate, acetate, or free amino acids. OG-1 showed the fastest growth rate within the genus Thermococcus. Growth was inhibited by rifampicin. The DNA G+C content was 52 mol%. Sequencing of their 16S rDNA gene fragment indicated that these isolates belonged to the genus Thermococcus. OG-1 and SM-2 were different than the described Thermococcus species. We propose that OG-1 belongs to a new species: Thermococcus peptonophilus. Received: 8 March 1995 / Accepted: 24 May 1995  相似文献   

15.
The thermophilic fungus Thermomyces lanuginosus, which is able to use dextran as primary carbon source for growth, excreted during the early phases of growth an enzyme activity capable of degrading dextran. The activity peaked at 22 h and decreased rapidly after the culture entered the stationary phase, probably caused by protease activity. Results from growth on a number of different carbon sources showed that polymer carbohydrates yielded the highest dextranase activities. On the basis of the substrate specificity and the release of glucose in the α-anomeric form from the hydrolysis of maltose, it is proposed that the enzyme responsible for the necessary degradation of dextran to smaller saccharides is an α-glucosidase. Received: 30 November 1995 / Accepted: 14 February 1996  相似文献   

16.
Clostridium thermocellum cell extracts exhibit specific endonuclease activity with very little non-specific exonuclease activity at 55°C. The Dam methylation system of Escherichia coli offers complete protection from digestion by C. thermocellum ATCC 27405 cell extracts for all DNA tested (totaling >100 kb, insuring that most potential restriction sequences have been exposed). Based on both the Dam recognition sequence and the similarity of cell extract and MboI DNA digests, the C. thermocellum restriction enzyme recognition sequence appears to be 5′ GATC 3′. Cell extracts made from a second thermophile, C. thermosaccharolyticum ATCC 31960 do not exhibit specific endonuclease activity under the conditions tested. Genomic DNA from C. thermocellum exhibits a Dam+ phenotype while genomic DNA from C. thermosaccharolyticum exhibits a Dam- phenotype. Received: 10 March 1995/Received revision: 4 September 1995/Accepted: 13 September 1995  相似文献   

17.
The production rate of a bacteriocin, produced by Lactobacillus plantarum TMW1.25 and previously named plantaricin1.25, was studied during pH-constant batch fermentations under various growth media conditions. The growth of L. plantarum and production of bacteriocin during the retardation phase were modelled, using 11 different empirical and mechanistic approaches. The optimal pH for bacteriocin production was 4.5. Among the different nitrogen sources tested, yeast extract was the most important, on the basis of the fact that the maximum growth rate decreased 16% without yeast extract, and only 7.2% or 8.1% without meat extract or peptone respectively. However, the change of nitrogen source did not have a significant effect on bacteriocin production. The progression of plantaricin1.25 production during the retardation phase and growth of L. plantarum TMW1.25 could be described by a structured model in which the bacteriocin concentration induces its own production. Among those models not implementing bacteriocin induction, only the one with an exponential increase of bacteriocin yield per unit biomass was suitable to describe bacteriocin production. Computer-aided evaluation of experimental data appears to be helpful in elucidating the relationship between the growth of lactic acid bacteria and bacteriocin production. Received: 22 May 1998 / Received last revision: 9 November 1998 / Accepted: 14 November 1998  相似文献   

18.
Proteolytic activity and a subtilisin inhibitor (NSI) were detected in Natrialba magadii cells. The proteolytic activity was due to two different proteases: a ∼90-kDa metallo protease (NMP) produced during exponential growth and a 246-kDa serine protease (NSP) detected in the stationary phase. Both proteases were detected in the cytosolic fraction. NSI activity was maximal during early stages of growth and decreased in the stationary phase. NSI is a 35-kDa thermosensitive protein; it inhibits NSP activity but has no effect on NMP, and it was detected as a soluble or membrane-bound protein depending on the growth phase. Our results suggest that NSI may regulate NSP activity in vivo and that this protease may have a role in stationary phase cells. To our knowledge, this is the first report on the occurrence of protease inhibitors in Archaea. Received: 4 May 2002 / Accepted: 10 July 2002  相似文献   

19.
Escherichia coli and Pseudomonas aeruginosa grown in the presence of certain harmful organic solvents become susceptible to these solvents during the cultivation. This susceptibility is conspicuous in the stationary phase of growth. The organic solvent tolerance levels of these microorganisms were maintained when the oxygen concentration was kept high. The tolerance levels were maintained also when these organisms were grown with nitrate present under anaerobic respiratory conditions. Received: 21 March, 1997 / Accepted: July 20, 1997  相似文献   

20.
Obligately commensal interaction between a new gram-negative thermophile and a thermophilic Bacillus strain was investigated. From compost samples, a mixed culture showing tyrosine phenol-lyase activity was enriched at 60°C. The mixed culture consisted of a thermophilic gram-negative strain, SC-1, and a gram-positive spore-forming strain, SK-1. In mixed cultures, strain SC-1 started to grow only when strain SK-1 entered the stationary phase. Although strain SC-1 showed tyrosine phenol lyase activity, we could not isolate a colony with any nutrient medium. For the isolation and cultivation of strain SC-1, we added culture supernatant and cell extract of the mixed culture to the basal medium. The supernatant and cell extract of the mixed culture contained heat-stable and heat-labile factors, respectively, that are essential to the growth of strain SC-1. During pure cultures of strain SK-1, the heat-stable growth factors were released during the growth phase and the heat-labile growth factors were produced intracellularly at the early stationary phase. Strain SC-1 was gram-negative and microaerophilic, and grows optimally at 60°C. Based on these results, we propose a novel commensal interaction between a new gram-negative thermophile, strain SC-1, and Bacillus sp. strain SK-1. Received: November 18, 1999 / Accepted: December 2, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号