首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

2.
Inhibitors of oxidative phosphorylation such as several triorganotin compounds, oligomycin, 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone suppress energy metabolism of isolated rat thymocytes as indicated by a reduction of ATP levels, an increase in glucose consumption and by a marked accumulation of lactate. Also these compounds effectively inhibit the incorporation of DNA, RNA and protein precursors into acid-precipitable material of thymocytes. Moreover, the prostaglandin E1-induced elevation of cAMP is markedly reduced by these inhibitors. A correlation is observed between the effects on energy metabolism, macromolecular synthesis and cAMP production, since from a series of trialkyltin chlorides, tri-n-propyltin, tri-n-butyltin and tri-n-hexyltin are very effective inhibitors of these functions, while trimethyltin and tri-n-octyltin affect neither of them; other inhibitors of oxidative phosphorylation, each of them with quite different mechanisms of action, also inhibit macromolecular synthesis and cAMP production. The finding that a rise in intracellular ATP concentrations leads to a reversion of the tri-n-butyltin-induced inhibition of cAMP production and uridine incorporation, indicates a regulating role for the cellular energy state in these aspects of cellular function.  相似文献   

3.
4.
The inhibitor of oxidative phosphorylation tri-n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 microM. From a concentration of 0.1 microM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake, glucose consumption and lactate production and by a decrease in cellular ATP levels. Over the same TBTC concentration range, the incorporation of DNA, RNA and protein precursors are markedly reduced. Moreover the production of cyclic AMP upon stimulation of the cells with prostaglandin E1 is effectively inhibited. These effects cannot be explained by an inhibition of nucleoside kinase activity, amino acid uptake or adenylate cyclase activity. The effects of TBTC on macromolecular synthesis and cyclic AMP production are possibly due to a disturbance of the cellular energy state.  相似文献   

5.
Cultures of chick tendon fibroblasts were capable of normal ATP production and protein synthetic activity even though the normally high rate of glycolysis was markedly reduced by substitution of pyruvate for glucose. Iodoacetate and 2-deoxyglucose reduced ATP levels and protein synthesis even in the presence of pyruvate. Under these conditions, both inhibitors were shown to have effects on the energy metabolism of cells which were apparently unrelated to an inhibition of glycolysis. Selective inhibition of either glycolysis, by incubation in glucose-free medium, or of oxidative phosphorylation, by incubation with an uncoupler, was shown to have little effect on cellular ATP levels or intracellular transport and secretion of collagen. However, inhibition of both glycolysis and oxidative phosphorylation resulted in decreased cellular ATP levels and an inhibition of collagen secretion. This effect was not due to a requirement for continued protein synthesis, since inhibition of protein synthesis with cycloheximide or puromycin had little effect on collagen secretion. The ATP requirement for intracellular transport and secretion is discussed in relation to the secretory pathway for collagen.  相似文献   

6.
Inhibitors of oxidative phosphorylation such as several triorganotin compounds, oligomycin, 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone suppress energy metabolism of isolated rat thymocytes as indicated by a reduction of ATP levels, an increase in glucose consumption and by a marked accumulation of lactate. Also these compounds effectively inhibit the incorporation of DNA, RNA and protein precursors into acid-precipitable material of thymocytes. Moreover, the prostaglandin E1-induced elevation of cAMP is markedly reduced by these inhibitors. A correlation is observed between the effects on energy metabolism, macromolecular synthesis and cAMP production, since (i) from a series of trialkyltin chlorides, tri-n-propyltin, tri-n-butyltin and tri-n-hexyltin are very effective inhibitors of these functions, while trimethyltin and tri-n-octyltin affect neither of them; (ii) other inhibitors of oxidative phosphorylation, each of them with quite different mechanisms of action, also inhibit macromolecular synthesis and cAMP production. The finding that a rise in intracellular ATP concentrations leads to a reversion of the tri-n-butyltin-induced inhibition of cAMP production and uridine incorporation, indicates a regulating role for the cellular energy state in these aspects of cellular function.  相似文献   

7.
The internal control of hepatocyte metabolism has been previously analysed using metabolic control analysis. The aim of this paper is to extend this analysis to include the responses of the cells to hormonal stimulus. Hepatocyte metabolism was divided into nine reaction blocks: glycogen breakdown, glucose release, glycolysis, lactate production, NADH oxidation, pyruvate oxidation, proton leak, mitochondrial phosphorylation and ATP consumption, linked by five intermediates: mitochondrial membrane potential, cytoplasmic NADH/NAD and total cellular ATP, glucose 6-phosphate and pyruvate. The kinetic responses of the reaction blocks to the intermediates were determined previously in the absence of added hormones. In this study, the changes in flux and intermediate levels that occurred upon addition of either glucagon or adrenaline were measured. From comparison of the fractional changes in fluxes and intermediate levels with the known kinetics of the system, it was possible to determine the primary sites of action of the hormones. The results show that the majority of processes in the cell are responsive to the hormones. The notable exception to this is the failure of adrenaline to have a direct effect on glycolysis. The activity change of each metabolic block observed in the presence of either hormone was quantified and compared to the indirect effects on each block caused by changes in metabolite levels. The second stage of the analysis was to use the calculated activity changes and the known control pattern of the system to give a semiquantitative analysis of the regulatory pathways employed by the hormones to achieve the changes in fluxes and metabolite levels. This was instructive in analysing, for example, how glucagon caused a decrease in flux through glycolysis and an increase in oxidative phosphorylation without large changes in metabolite levels (homeostasis). Conversely, it could be seen that the failure of adrenaline to maintain a constant glucose 6-phosphate concentration was due to the stimulation of glycogen breakdown and inhibition of glucose release.  相似文献   

8.
Adenosine is present in the micromolar range in human plasma. In this study, metabolism of adenosine, which was maintained between 0.62 +/- 0.03 and 2.92 +/- 0.43 microM by means of a continuous infusion using a Harvard infusion pump, was investigated in human red blood cells. It was found that lactate production increases linearly as the adenosine concentration was raised. Cells infused with an average adenosine concentration of 2 microM produced lactate comparable to that produced by 5 mM glucose. The extent to which ATP concentration is maintained by adenosine also depends on its concentration. After a 4 h infusion with an average adenosine concentration of 0.7 microM, ATP content amounts to 75% of the glucose control. Raising the adenosine infusion concentration to 1.5 microM results in a full maintenance of ATP levels and at concentrations higher than 1.5 microM, adenosine produces a net synthesis of ATP. A net synthesis of ATP also occurs with adenosine concentration below 1.5 microM, if supplemented with glucose. In contrast, inosine infusion provides only a partial support of ATP and fails to produce a net synthesis of ATP in the presence of glucose. In addition, the presence of purine nucleoside and glucose together influence the metabolism of each other, depending on inorganic phosphate content (Pi). At a Pi concentration of 1 mM, the glucose consumption rate is reduced by approx. 25% by purine nucleoside infusion and vice versa. In sharp contrast, glucose consumption at 16 mM Pi is potentiated by adenosine. These findings suggest that plasma adenosine contributes significantly to human red cell energetics, even though it is present at a concentration several orders of magnitude lower than glucose.  相似文献   

9.
Exposure of corticoid-sensitive P1798 lymphocytes to cortisol results in inhibition of uridine uptake and incorporation with no effect on 2-deoxyglucose transport. Nucleoside uptake by corticoid-resistant cells is not affected by the hormone. Inhibition of uridine transport may play a key role in tumor regression and does not depend on reduced availability of glucose.  相似文献   

10.
Studies of metabolism of round spermatids: glucose as unfavorable substrate   总被引:2,自引:0,他引:2  
The exposure of spermatids to glucose in the absence of pyruvate and lactate resulted in an extremely low energy charge. The adenosine 5'-triphosphate (ATP) level rapidly declined and the fructose 1,6-bisphosphate (FBP) and triose levels increased. These changes were prevented by the addition of pyruvate or lactate. The levels of ATP and FBP were inversely correlated. In cells exposed to glucose, FBP did not flow appreciably through the step of glyceraldehyde 3-phosphate dehydrogenase (GA3PDH). The lactate level did not change. However, when pyruvate or lactate was administered to cells exposed to glucose, the FBP level declined rapidly. This drop was accompanied by a commensurate increase in lactate. In these cells, pyruvate transport was suppressed, and the pyruvate taken up by these cells was mostly oxidized in the tricarboxylic acid (TCA) cycle without its being reduced to lactate. In this case, the ATP level increased, but to a level still lower than existed before exposure to glucose. Furthermore, when kinetic studies on the activity of 6-phosphofructokinase (PFK) were carried out, PFK appeared to be fully activated at intracellular levels of fructose 6-phosphate, ATP and adenosine 5'-monophosphate (AMP). These results indicate that the rate of glucose metabolism in glycolysis depends heavily on the energy charge. In cells exposed to glucose, the sugar does not flow appreciably through the glycolytic pathway due to inhibition of GA3PDH. Moreover, the ATP level cannot be recovered fully from the lowest level by the addition of pyruvate or lactate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
ADENOSINE (0.5 MM) added to hepatocyte suspensions increased the intracellular concentration of ATP and total adenine nucleotides within 60 min up to three-fold. 2. Adenosine at 0.5 mM inhibited gluconeogenesis from lactate by about 50%. At higher adenosine concentrations the inhibition was less. There was no strict parallelism between the time-course of the increase of the adenine nucleotide content and the time-course of the inhibition of gluconeogenesis from lactate. 3. Adenosine abolished the accelerating effects of oleate and dibutyryl cyclic AMP on gluconeogenesis from lactate. 4. Gluconeogenesis was no significant effect of adenosine with fructose, dihydroxyacetone or glycerol. With asparagine, adenosine caused anacceleration of glucose formation. 5. Adenosine incorporation into adenine nucleotides accounted for about 20% of the adenosine removal. 6. Inosine, hypoxanthine or adenine compared with adenosine gave relatively slight increases of adenine nucleotides. 7. Urea synthesis from NH4Cl under optimum conditions i.e. in the presence of ornithine, lactate and oleate, was also inhibited by adenosine. The inhibition increased with the adenosine concentration and was 65% at 4 mM-adenosine. Again there was no correlation between the degree of inhibition of urea synthesis and the increase in the adenine nucleotide content. 8. The basal O2 consumption, the increased O2 consumption on the addition of oleate and the rate of formation of ketone bodies were not affected by the addition of adenosine. The [beta-hydroxybutyrate]/[acetoacetate] ratio was increased by adenosine, provided that lactate was present. 9. The increase of the adenine nucleotide content of the hepatocytes on the addition of adenosine may be explained on the assumption that adenosine kinase is not regulated by feedback but by substrate supply.  相似文献   

12.
The inhibitor of oxidative phosphorylation tri-n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 μM. From a concentration of 0.1 μM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake, glucose consumption and lactate production and by a decrease in cellular ATP levels. Over the same TBTC concentration range, the incorporation of DNA, RNA and protein precursors are markedly reduced. Moreover the production of cyclic AMP upon stimulation of the cells with prostaglandin E1 is effectively inhibited. These effects cannot be explained by an inhibition of nucleoside kinase activity, amino acid uptake or adenylate cyclase activity. The effects of TBTC on macromolecular synthesis and cyclic AMP production are possibly due to a disturbance of the cellular energy state.  相似文献   

13.
Fatty acid synthesis by isolated liver cells is dependent upon the availability of lactate and pyruvate. A lag in fatty acid synthesis is explained by time being required for lactate and pyruvate to accumulate to maximum concentrations in the incubation medium. The initial rate of fatty acid synthesis is not linear with cell concentration, being disproportionately greater at higher cell concentrations because optimal lactate and pyruvate concentrations are established in the medium more rapidly. The accumulation of lactate and pyruvate is inhibited markedly by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. This accounts in part for the inhibition of fatty acid synthesis caused by this cyclic nucleotide. Other sites of action are apparent, however, because exogenous lactate plus pyruvate only partially relieves the inhibition. The profile of metabolic intermediates suggests that N6,O2′-dibutyryl adenosine 3′,5′-monophosphate inhibits the conversion of glycogen to pyruvate and lactate by decreasing the effectiveness of phosphofructokinase and pyruvate kinase.  相似文献   

14.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

15.
Dorsal root ganglia, excised from the lumbar roots of the sciatic nerve of white Leghorn chicken embryos 6-13 days of age, were incubated usually for 5 h, at 36 degrees C in 20 microliters of a bicarbonate-buffered physiological salt solution containing 5.5 mM glucose. [U-14C]Glucose, [1-14C]glucose, [6-14C]glucose, or [5-3H]uridine was also added. Lipid synthesis and lactate output were measured by incorporation of 3H from [5-3H]uridine. Glucose uptake and labeled lactate output declined rapidly from 6 to 8-9 days of age, more slowly thereafter. Synthesis of lipids was relatively constant throughout the ages studied, without the increased rate at intermediate ages seen previously in sympathetic ganglia of the same species. RNA synthesis declined progressively throughout the ages studied. The output of C-6 of glucose to CO2 was about the same at all ages, whereas that of C-1 declined rapidly from 6 to 7 days of age and then more slowly, but always remained higher than that of C-6 and thus indicated that much glucose was metabolized via the hexosemonophosphate shunt.  相似文献   

16.
MCF-7 human breast cancer cells propagated in vitro were treated with adenosine derivatives added to the culture medium. The effects on cell proliferation, glycolysis, and glutaminolysis were investigated. Of all adenosine derivatives tested, AMP was the most efficient inhibitor of cell proliferation. In AMP-treated cells, DNA synthesis decreased, whereas RNA and protein syntheses rose normally with time. In terms of carbohydrate metabolism, lactate production from glucose was drastically reduced; therefore, most of lactate produced must have been derived from glutamine. Increases in the enzyme activities involved in glutamate degradation and in the malate-aspartate shuttle were observed. In contrast, actual glycolytic flux rates declined, whereas key glycolytic enzyme activities increased. Metabolites such as fructose 1,6-bisphosphate and pyruvate accumulated in AMP-arrested cells. Based on the lowered NAD level in the AMP-treated cells, lactate dehydrogenase, but not malate dehydrogenase, was impaired; thereby the whole of glycolysis was inhibited. In compensation, glutamine catabolism was increased. NAD concentrations fell drastically because of the known inhibition of P-ribose-PP synthesis through heightened intracellular AMP levels. A hypothetical metabolic scheme to explain these results and to show how extracellular AMP may influence carbohydrate metabolism and cell proliferation is presented.  相似文献   

17.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

18.
The influence of mitochondrial inhibitors, including oligomycin, antimycin and rotenone, on the iodide and oxygen uptake and the nucleotide content of incubated sheep thyroid slices was investigated. Each inhibitor strongly suppressed both iodide and oxygen uptake, and decreased the nucleoside triphosphate content of the slices. In most cases the addition of glucose or mitochondrial substrates restored iodide uptake in inhibitor-treated slices. Inhibitor concentrations sufficient to inhibit iodide uptake strongly had only slight effects on the thyroidal Na(+)+K(+)-activated adenosine triphosphatase. It is concluded that the inhibitors produce their effects by the inhibition in vivo of mitochondrial oxidative phosphorylation. ATP synthesis appears to be essential for iodide uptake to occur, and the high-energy intermediates (or energized state) of oxidative phosphorylation cannot be used to energize the uptake process. To a limited extent glycolytic ATP synthesis can support iodide uptake, which is therefore not exclusively dependent on aerobic metabolism. The mechanism of energy-linked iodide uptake is discussed.  相似文献   

19.
1. The mechanism of xylitol-dependent inhibition of glycolysis in Streptococcus sobrinus OMZ 176 was investigated in aerobically and anaerobically grown cells. 2. Glucose-stimulated glycolysis was followed polarographically, by radio-HPLC-analyses of glycolytic intermediates, by measurement of ATP generated, and spectrophotometric monitoring of extent of NAD(P)+/NADPH-status. 3. Xylitol added to suspensions of S. sobrinus inhibited O2 uptake by approximately 20%, and led to a corresponding decrease in rate of lactate formation in aerobic and anaerobic cells. 4. Xylitol also delayed the onset of the glucose-dependent rapid reduction of NAD(P)+ by approximately 1 min, although the total extent of reduction was not significantly affected compared to control cells. 5. The inhibitory effect of xylitol on glucose dependent ATP synthesis, however, was decreased by 70-80%. 6. Hence the dramatic decrease in glucose-dependent synthesis of ATP may be the direct cause of decreased bacterial growth in the presence of xylitol. 7. A mechanism explaining the observed phenomena is proposed.  相似文献   

20.
Incorporation of tritiated amino acids and uridine was studied in untreated and actinomycin D treated HeLa cells by high resolution autoradiography. Results showed a non-selective inhibition of protein synthesis by actinomycin, as measured by the decrease in radioactive amino acid uptake. When cells pretreated with actinomycin D were incubated with radioactive amino acids and uridine, amino acid uptake in the nucleolus still occurred, while uridine uptake was almost completely eliminated. These findings suggest that in the absence of ribosomal RNA precursor synthesis, nucleolar protein synthesis continues to some extent, and that this protein is transported to the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号