首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble β-amyloid (Aβ) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Aβ oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Aβ-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Aβ peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Aβ-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Aβ oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.  相似文献   

2.
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer’s disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1−/− cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer’s disease and supports the role of lipid rafts in these processes.  相似文献   

3.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.  相似文献   

4.
Alzheimer's disease (AD) is the most common cause of dementia in the elderly and presents a great burden to sufferers and to society. The genetics of rare Mendelian forms of AD have been central to our understanding of AD pathogenesis for the past twenty years and now the genetics of the common form of the disease in the elderly is beginning to be unravelled by genome-wide association studies. Four new genes for common AD have been revealed in the past year, CLU, CR1, PICALM and BIN1. Their possible involvement in lipid metabolism and how that relates to AD is discussed here.  相似文献   

5.
Protein-Bound Acrolein   总被引:14,自引:1,他引:13  
Abstract : Several lines of evidence support the role of oxidative stress, including increased lipid peroxidation, in the pathogenesis of Alzheimer's disease (AD). Lipid peroxidation generates various reactive aldehydes, such as 4-hydroxynonenal (HNE), which have been detected immunochemically in AD, particularly in neurofibrillary tangels, one of the major diagnostic lesions in AD brains. A recent study demonstrated that acrolein, the most reactive among the α, β-unsaturated aldehyde products of lipid peroxidation, could be rapidly incorporated into proteins, generating a carbonyl derivative, a marker of oxidative stress to proteins. The current studies used an antibody raised against acrolein-modified keyhole limpet hemocyanin (KLH) to test whether acrolein modification of proteins occurs in AD. Double immunofluorescence revealed strong acrolein-KLH immunoreactivity in more than half of all paired helical filament (PHF)-1-labeled neurofibrillary tangles in AD cases. Acrolein-KLH immunoreactivity was also evident in a few neurons lacking PHF-1-positive neurofibrillary tangles. Light acrolein-KLH immunoreactivity occurred in dystrophic neurites surrounding the amyloid-β core, which itself lacked acrolein-KLH staining. The pattern of acrolein-KLH immunostaining was similar to that of HNE. Control brains did not contain any acrolein-KLH-immunoreactive structures. The current results suggest that protein-bound acrolein is a powerful marker of oxidative damage to protein and support the hypothesis that lipid peroxidation and oxidative damage to protein may play a crucial role in the formation of neurofibrillary tangles and to neuronal death in AD.  相似文献   

6.
With the ever-increasing population of aged individuals at risk of developing Alzheimer's disease (AD), there is an urgent need for a sensitive, specific, non-invasive, and diagnostic standard. The majority of efforts have focused on auto-antibodies against amyloid-β (Aβ) protein, both as a potential treatment, and a reliable biomarker of AD pathology. Naturally occurring antibodies against Aβ are found in the CSF and plasma of patients with AD as well as healthy control subjects. To date, differences between diseased and control subjects have been highly variable. However, some of the antibody will be in preformed antigen–antibody complexes and the extent and nature of such complexes may provide a potential explanation for the variable results reported in human studies. Thus, measuring total amounts of antigen or antibody following unmasking is critical. Here, using a technique for dissociating antibody–antigen complexes, we found significant differences in serum antibodies to Aβ between AD and aged-matched control subjects. While the current study demonstrates the relevance of measuring total antibody, bound and unbound, against Aβ in AD, this technique may be applicable to diseases such as acquired immune deficiency syndrome and hepatitis B where determination of antigen and antibody levels are important for disease diagnosis and assessing disease progression.  相似文献   

7.
Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common cause of dementia among the elderly. Efforts have been made to understand the genetic and epigenetic mechanisms involved in the development of this disease. As SORL1 (sortilin-related receptor) and SIRT1 (sirtuin 1) genes have been linked to AD pathogenesis, we aimed to investigate their mRNA expression and promoter DNA methylation in post mortem brain tissues (entorhinal and auditory cortices and hippocampus) from healthy elderly subjects and AD patients. We also evaluated these levels in peripheral blood leukocytes from young, healthy elderly and AD patients, investigating whether there was an effect of age on these profiles. The comparative CT method by Real Time PCR and MALDI-TOF mass spectrometry were used to analyze gene expression and DNA methylation, respectively. SORL1 gene was differently expressed in the peripheral blood leukocytes and might act as a marker of aging in this tissue. Furthermore, we found that SORL1 promoter DNA methylation might act as one of the mechanisms responsible for the differences in expression observed between blood and brain for both healthy elderly and AD patients groups. The impact of these studied genes on AD pathogenesis remains to be better clarified.  相似文献   

8.
9.
Lipid-mediated signalling regulates a plethora of physiological processes, including crucial aspects of brain function. In addition, dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders, such as Alzheimer's disease (AD). Although much attention has been given to the link between cholesterol and AD pathogenesis, growing evidence suggests that other lipids, such as phosphoinositides and phosphatidic acid, have an important role. Regulators of lipid metabolism (for example, statins) are a highly successful class of marketed drugs, and exploration of lipid dysregulation in AD and identification of novel therapeutic agents acting through relevant lipid pathways offers new and effective options for the treatment of this devastating disorder.  相似文献   

10.
The characterization of atherosclerosis as a chronic inflammatory disease has triggered extensive research worldwide to dissect the pro- and anti-inflammatory, cellular as well as molecular mechanisms governing the pathogenesis of this dreadful disease. Though several microRNAs have been shown to play crucial role in regulating lipid metabolism and inflammation, we are far from resolving the role of epigenomic signals in etiology of coronary heart disease (CHD). The present study was addressed to understand the role of a novel microRNA, miR-2909, in the regulation of genes involved in the initiation and progression of human coronary occlusion. Peripheral blood mononuclear cells were isolated from human CHD subjects at various stages of coronary occlusion (n = 80) and their corresponding normal healthy counterparts (n = 20). Various experimental strategies involving gene expression and silencing, reporter plasmid assays, and flow cytometric analysis were blend together to address the current problem. The present study shows for the first time that the blood cellular miR-2909 expression increases with the severity of coronary occlusion, exhibiting a strong positive correlation (r = 0.943 at p < 0.01). Further, miR-2909 was shown to regulate genes involved in inflammation, immunity, and oxLDL uptake, thereby contributing significantly to the initiation and progression of CHD patho-physiological process. Based upon these results, we propose that miR-2909 RNomics may be a step forward in understanding human CHD at the epigenomic level and can be exploited for designing new therapeutic strategies as well as diagnostic and prognostic markers for this disease in future.  相似文献   

11.
12.
Autophagy is an essential and conserved lysosomal degradation pathway that controls the quality of cytoplasm by eliminating the intracellular aggregated proteins and damaged organelles. Autophagy works in mammalian target of rapamycin (mTOR)-dependent pathway or mTOR-independent pathway to keep the neuronal homeostasis. Mounting evidence has implicated the importance of defective autophagy in the pathogenesis of aging and neurodegenerative diseases, especially in Alzheimer’s disease (AD). It has also demonstrated a neuroprotective role of autophagy in mediating the degradation of amyloid beta and tau which are major factors of AD. Amounts of molecules function in either mTOR-dependent pathway or mTOR-independent pathway to induce autophagy, which maybe a potential treatment for AD. In this review, we summarize the latest studies concerning the role of autophagy in AD and explore autophagy modulation as a potential therapeutic strategy for AD. However, to date, little of the researches on autophagy have been performed to investigate the modulation in AD; more investigations need to be confirmed in the future.  相似文献   

13.
Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels.  相似文献   

14.
D G Munoz  H Feldman 《CMAJ》2000,162(1):65-72
It is now understood that genetic factors play a crucial role in the risk of developing Alzheimer''s disease (AD). Rare mutations in at least 3 genes are responsible for early-onset familial AD. A common polymorphism in the apolipoprotein E gene is the major determinant of risk in families with late-onset AD, as well as in the general population. Advanced age, however, remains the major established risk factor for AD, although environmental variables may also have some role in disease expression. Some pathogenic factors directly associated with aging include oxidative damage and mutations in messenger RNA. Other factors unrelated to the aging process may, in the future, be amenable to therapeutic intervention by way of estrogen replacement therapy for postmenopausal women, anti-inflammatory drug therapy and reducing vascular risk factors. Older theories, such as aluminum playing a role in the pathogenesis of AD, have been mostly discarded as our understanding of pathogenic mechanisms of AD has advanced.  相似文献   

15.
Mouse models of Alzheimer disease (AD) have been generated based on Amyloid-β Precursor Protein (AβPP) and the Presenilin (PSEN) gene mutations associated with familial AD (FAD). Such models have provided valuable insights into AD pathogenesis and represent an important research tool for the discovery of potential treatments. To model amyloid deposition in AD, we generated a new mouse line based on the presence of two copies of the genomic region encoding human wild-type AβPP as well as a mutation (L166P) in the murine Psen1. By ~6 months of age, these mice have begun to develop cerebral Aβ pathology with a significant increase in the levels of AβPP C-terminal fragments and Aβ42, as well as increase Aβ42/Aβ40 ratio. Since in the brain and other tissues of these mice, wild-type human AβPP mRNA and protein levels are comparable to those of endogenous AβPP, this model may allow studies about the role of AβPP isoforms in the pathogenesis of AD. This animal model may be suitable to test drugs aimed at inhibiting expression or altering splicing and processing of AβPP, without artifacts associated with the presence of mutations in AβPP or overexpression due to the use of exogenous promoters. These features of the new model are of critical importance in assessing the success of therapeutic interventions.  相似文献   

16.
Oxidative stress and quasi-inflammatory processes recently have been recognized as contributing factors in the pathogenesis of Alzheimer's disease (AD). Reactive nitrating species have specifically been implicated in AD based on immunochemical and instrumental detection of nitrotyrosine in AD brain protein. The significance of lipid-phase nitration has not been investigated in AD. This study documents a significant two- to threefold increase in the lipid nitration product 5-nitro-gamma-tocopherol in affected regions of the AD brain as determined by high-performance liquid chromatography with electrochemical detection. In a bioassay to compare the relative potency of alpha-tocopherol and gamma-tocopherol against nitrative stress, rat brain mitochondria were exposed to the peroxynitrite-generating compound SIN-1. The oxidation-sensitive Kreb's cycle enzyme alpha-ketoglutarate dehydrogenase was inactivated by SIN-1, in a manner that could be significantly attenuated by gamma-tocopherol (at <10 microM) but not by alpha-tocopherol. These data indicate that nitric oxide-derived species are significant contributors to lipid oxidation in the AD brain. The findings are discussed in reference to the neuroinflammatory hypothesis of AD and the possible role of gamma-tocopherol as a major lipid-phase scavenger of reactive nitrogen species.  相似文献   

17.
Prior to the identification of the various abnormal proteins deposited as fibrillar aggregates in the Alzheimer's disease (AD) brain, there was tremendous controversy over the importance of the various lesions with respect to primacy in the pathology of AD. Nevertheless, based on analogy to systemic amyloidosis, many investigators believed that the amyloid deposits in AD played a causal role and that characterization of these deposits would hold the key to understanding this complex disease. Indeed, in retrospect, it was the initial biochemical purifications of the approximately 4 kDa amyloid beta-peptide (Abeta) from amyloid deposits in the mid 1980s that launched a new era of AD research (Glenner and Wong, Biochem. Biophys. Res. Commun. 122 (1984) 1121-1135; Wong et al., Proc. Natl. Acad Sci. USA 82 (1985) 8729 8732; and Masters et al., Proc. Natl. Acad Sci. USA 82 (1985) 4245-4249). Subsequent studies of the biology of Abeta together with genetic studies of AD have all supported the hypothesis that altered Abeta metabolism leading to aggregation plays a causal role in AD. Although there remains controversy as to whether Abeta deposited as classic amyloid or a smaller, aggregated, form causes AD, the relevance of studying the amyloid deposits has certainly been proven. Despite the significant advances in our understanding of the role of Abeta in AD pathogenesis, many important aspects of Abeta biology remain a mystery. This review will highlight those aspects of Abeta biology that have led to our increased understanding of the pathogenesis of AD as well as areas which warrant additional study.  相似文献   

18.
The pathophysiology of Alzheimer's disease (AD) is comprised of complex metabolic abnormalities in different cell types in the brain. To date, there are not yet effective drugs that can completely inhibit the pathophysiological event, and efforts have been devoted to prevent or minimize the progression of this disease. Much attention has focused on studies to understand aberrant functions of the ionotropic glutamate receptors, perturbation of calcium homeostasis, and toxic effects of oligomeric amyloid beta peptides (Aβ) which results in production of reactive oxygen and nitrogen species and signaling pathways, leading to mitochondrial dysfunction and synaptic impairments. Aberrant phospholipase A(2) (PLA(2)) activity has been implicated to play a role in the pathogenesis of many neurodegenerative diseases, including AD. However, mechanisms for their modes of action and their roles in the oxidative and nitrosative signaling pathways have not been firmly established. In this article, we review recent studies providing a metabolic link between cytosolic PLA(2) (cPLA(2)) and neuronal excitation due to stimulation of ionotropic glutamate receptors and toxic Aβ peptides. The requirements for Ca(2+) binding together with its posttranslational modifications by protein kinases and possible by the redox-based S-nitrosylation, provide strong support for a dynamic role of cPLA(2) in serving multiple functions to neurons and glial cells under abnormal physiological and pathological conditions. Therefore, understanding mechanisms for cPLA(2) in the oxidative and nitrosative pathways in neurons will allow the development of novel therapeutic targets to mitigate the detrimental effects of AD.  相似文献   

19.
In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer??s disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of A??, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.  相似文献   

20.
Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer’s disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号