首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA background has been shown to be involved in the penetrance of Leber’s hereditary optic neuropathy (LHON) in western Eurasian populations. To analyze mtDNA haplogroup distribution pattern in Han Chinese patients with LHON and G11778A mutation, we analyzed the mtDNA haplogroups of 41 probands with LHON known to harbor G11778A mutation by sequencing the mtDNA control region hypervariable segments and some coding region polymorphisms. Each mtDNA was classified according to the available East Asian haplogroup system. The haplogroup distribution pattern of LHON sample was then compared to the reported Han Chinese samples. Haplogroups M7, D, B, and A were detected in 11 (26.8%), 10 (24.4%), 8 (19.5%), and 5 (12.2%) LHON families, respectively, and accounted for 82.9% of the total samples examined. For the remaining seven mtDNAs, six belonged to M8a, M10a, C, N9a, F1a, and R11, respectively, and one could only be assigned into macro-haplogroup M. The LHON sample was distinguished from other Han Chinese samples in the principal component map based on haplogroup distribution frequency. Our results show that matrilineal genetic components of Chinese LHON patients with G11778A are diverse and differ from related Han Chinese regional samples. mtDNA background might affect the expression of LHON and the G11778A mutation in Chinese population.  相似文献   

2.
Yu D  Jia X  Zhang AM  Li S  Zou Y  Zhang Q  Yao YG 《PloS one》2010,5(10):e13426

Background

Leber hereditary optic neuropathy (LHON, MIM 535000) is one of the most common mitochondrial genetic disorders caused by three primary mtDNA mutations (m.3460G>A, m.11778G>A and m. 14484T>C). The clinical expression of LHON is affected by many additional factors, e.g. mtDNA background, nuclear genes, and environmental factors. Hitherto, there is no comprehensive study of Chinese LHON patients with m.14484T>C.

Methodology/Principal Findings

In this study, we analyzed the mtDNA sequence variations and haplogroup distribution pattern of the largest number of Chinese LHON patients with m.14484T>C to date. We first determined the complete mtDNA sequences in eleven LHON probands with m.14484T>C, to discern the potentially pathogenic mutations that co-segregate with m.14484T>C. We then dissected the matrilineal structure of 52 patients with m.14484T>C (including 14 from unrelated families and 38 sporadic cases) and compared it with the reported Han Chinese from general populations. Complete mtDNA sequencing showed that the eleven matrilines belonged to nine haplogroups including Y2, C4a, M8a, M10a1a, G1a1, G2a1, G2b2, D5a2a1, and D5c. We did not identify putatively pathogenic mutation that was co-segregated with m.14484T>C in these lineages based on the evolutionary analysis. Compared with the reported Han Chinese from general populations, the LHON patients with m.14484T>C had significantly higher frequency of haplogroups C, G, M10, and Y, but a lower frequency of haplogroup F. Intriguingly, we also observed a lower prevalence of F lineages in LHON subjects with m.11778G>A in our previous study, suggesting that this haplogroup may enact similar role during the onset of LHON in the presence of m.14484T>C or m.11778G>A.

Conclusions/Significance

Our current study provided a comprehensive profile regarding the mtDNA variation and background of Chinese patients with LHON and m.14484T>C. Matrilineal background might affect the expression of LHON in Chinese patients with m.14484T>C.  相似文献   

3.
Zhang AM  Jia X  Bi R  Salas A  Li S  Xiao X  Wang P  Guo X  Kong QP  Zhang Q  Yao YG 《PloS one》2011,6(11):e27750
Recent studies have shown that mtDNA background could affect the clinical expression of Leber hereditary optic neuropathy (LHON). We analyzed the mitochondrial DNA (mtDNA) variation of 304 Chinese patients with m.11778G>A (sample #1) and of 843 suspected LHON patients who lack the three primary mutations (sample #2) to discern mtDNA haplogroup effect on disease onset. Haplogroup frequencies in the patient group was compared to frequencies in the general Han Chinese population (n = 1,689; sample #3). The overall matrilineal composition of the suspected LHON population resembles that of the general Han Chinese population, suggesting no association with mtDNA haplogroup. In contrast, analysis of these LHON patients confirms mtDNA haplogroup effect on LHON. Specifically, the LHON sample significantly differs from the general Han Chinese and suspected LHON populations by harboring an extremely lower frequency of haplogroup R9, in particular of its main sub-haplogroup F (#1 vs. #3, P-value = 1.46×10−17, OR = 0.051, 95% CI: 0.016–0.162; #1 vs. #2, P-value = 4.44×10−17, OR = 0.049, 95% CI: 0.015–0.154; in both cases, adjusted P-value <10−5) and higher frequencies of M7b (#1 vs. #3, adjusted P-value = 0.001 and #1 vs. #2, adjusted P-value = 0.004). Our result shows that mtDNA background affects LHON in Chinese patients with m.11778G>A but not suspected LHON. Haplogroup F has a protective effect against LHON, while M7b is a risk factor.  相似文献   

4.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

5.
Zheng S  Wang C  Qian G  Wu G  Guo R  Li Q  Chen Y  Li J  Li H  He B  Chen H  Ji F 《Free radical biology & medicine》2012,53(3):473-481
The interplay of a complex genetic basis with the environmental factors of chronic obstructive pulmonary disease (COPD) may account for the differences in individual susceptibility to COPD. Mitochondrial DNA (mtDNA) contributes to an individual's ability to resist oxidation, an important determinant that affects COPD susceptibility. To investigate whether mtDNA haplogroups play important roles in COPD susceptibility, the frequencies of mtDNA haplogroups and an 822-bp mtDNA deletion in 671 COPD patients and 724 control individuals from southwestern China were compared. Multivariate logistic regression analysis revealed that, whereas mtDNA haplogroups A and M7 might be associated with an increased risk for COPD (OR=1.996, 95% CI=1.149-2.831, p=0.006, and OR=1.754, 95% CI=1.931-2.552, p=0.021, respectively), haplogroups F, D, and M9 might be associated with a decreased risk for COPD in this population (OR=0.554, 95% CI=0.390-0.787, p=0.001; OR=0.758, 95% CI=0.407-0.965, p=0.002; and OR=0.186, 95% CI=0.039-0.881, p=0.034, respectively). Additionally, the increased frequency of the 822-bp mtDNA deletion in male cigarette-smoking subjects among COPD patients and controls of haplogroup D indicated that haplogroup D might increase an individual's susceptibility to DNA damage from external reactive oxygen species derived from heavy cigarette smoking. We conclude that haplogroups A and M7 might be risk factors for COPD, whereas haplogroups D, F, and M9 might decrease the COPD risk in this Han Chinese population.  相似文献   

6.
Hungarians are unique among the other European populations because according to history, the ancient Magyars had come from the eastern side of the Ural Mountains and settled down in the Carpathian basin in the 9th century AD. Since variations in the human mitochondrial genome (mtDNA) are routinely used to infer the histories of different populations, we examined the distribution of restriction fragment length polymorphism (RFLP) sites of the mtDNA in apparently healthy, unrelated Hungarian subjects in order to collect data on the genetic origin of the Hungarian population. Among the 55 samples analyzed, the large majority belonged to haplogroups common in other European populations, however, three samples fulfilled the requirements of haplogroup M. Since haplogroup M is classified as a haplogroup characteristic mainly for Asian populations, the presence of haplogroup M found in approximately 5% of the total suggests that an Asian matrilineal ancestry, even if in a small incidence, can be detected among modern Hungarians.  相似文献   

7.
Li FX  Ji FY  Zheng SZ  Yao W  Xiao ZL  Qian GS 《Mitochondrion》2011,11(4):553-558
We conducted a case-control study to investigate the association of mitochondrial DNA (mtDNA) haplogroups with acute mountain sickness (AMS) in Han Chinese from southwestern (SW) China. Pearson's chi-square test or Fisher's exact test revealed significant reduction of mtDNA haplogroups D and M9, while a significant increase of haplogroup M7 in AMS subjects compared with non-AMS subjects. The multivariate logistic regression analysis after adjustment for body mass index (BMI), a risk factor of AMS in the present study, showed that both D and M9 were associated with significantly decreased risk of AMS, while M7 was associated with a significantly increased risk of AMS (OR=0.605, p=0.000; OR=0.037, p=0.001, and OR=2.419, p=0.001, respectively). In addition, further analysis stratified by the AMS severities indicated that haplogroup B was correlated with a 2.41-folds increased risk of developing severe AMS (95%C.I=1.288-4.514, p=0.006). Our findings provide evidence that, in SW Han Chinese, mtDNA haplogroups D and M9 are related to individual tolerance to AMS, while haplogroups M7 and B are risk factors for AMS.  相似文献   

8.
唐霄雯  李智渊  吕建新  朱翌  李荣华  王金丹  管敏鑫 《遗传》2008,30(10):1287-1294
摘要: 对1个中国汉族耳聋家系进行了临床和分子遗传学特征分析。家系中听力下降的母系成员表现为程度不等、听力图形态不同的听力损害, 但同为双侧对称的感觉神经性耳聋。该家系耳聋外显率很高, 包括药物致聋的耳聋外显率为75%, 而非药物致聋的外显率为41.7%。对母系成员进行线粒体DNA(mtDNA)全序列扩增分析, 发现了耳聋相关12S rRNA A1555G同质性突变位点和多态性位点, 属于东亚人群B5b单体型。在这些变异位点中, mtDNA 15927位点的G-A碱基变化破坏tRNAThr反密码子结构上十分保守的C-G碱基对, 这可能加重由A1555G突变造成的线粒体功能缺陷。这表明tRNAThrG15927A突变可能增强携带12S rRNA A1555G的中国汉族耳聋家系的外显率和表现度。  相似文献   

9.
We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation.  相似文献   

10.
Mitochondria are central eukaryotic organelles in cellular metabolism and ATP production. Mitochondrial DNA (mtDNA) alterations have been implicated in the development of colorectal cancer (CRC). However, there are few reports on the association between mtDNA haplogroups or single nucleotide polymorphisms (SNPs) and the risk of CRC. The mtDNA of 286 Northern Han Chinese CRC patients were sequenced by next-generation sequencing technology. MtDNA data from 811 Han Chinese population controls were collected from two public data sets. Then, logistic regression analysis was used to determine the effect of mtDNA haplogroup or SNP on the risk of CRC. We found that patients with haplogroup M7 exhibited a reduced risk of CRC when compared to patients with other haplogroups (odds ratio [OR] = 0.532, 95% confidence interval [CI] = 0.285–0.937, p = 0.036) or haplogroup B (OR = 0.477, 95% CI = 0.238–0.916, p = 0.030). Furthermore, haplogroup M7 was still associated with the risk of CRC when the validation and combined control cohort were used. In addition, several haplogroup M7 specific SNPs, including 199T>C, 4071C>T and 6455C>T, were significantly associated with the risk of CRC. Our results indicate the risk potential of mtDNA haplogroup M7 and SNPs in CRC in Northern China.  相似文献   

11.
Li XY  Su M  Huang HH  Li H  Tian DP  Gao YX 《Genomics》2007,90(4):474-481
There are three major geographic regions in China known for their high incidences of esophageal cancer (EC): the Taihang Mountain range of north-central China, the Minnan area of Fujian province, and the Chaoshan plain of Guangdong province. Historically, waves of great population migrations from north-central China through coastal Fujian to the Chaoshan plain were recorded. To study the genetic relationship among the related EC high-risk populations, we analyzed mitochondrial DNA (mtDNA) haplogroups based on 30 EC patients from Chaoshan and used control samples from the high-risk populations, including 48, 73, and 89 subjects from the Taihang, Fujian, and Chaoshan areas, respectively. The principal component of all haplogroups, correlation analysis of haplogroup frequency distributions between populations, and haplogroup D network analysis showed that compared with other Chinese populations, populations in the three studied areas are genetically related. The highest haplogroup frequency shared by all studied populations was haplogroup D, with much higher frequency in the Chaoshan area EC patients. The majority of haplogroup D individuals among the Chaoshan area EC patients belonged to subhaplogroups D4a and D5a, with the total frequency of these two haplogroups significantly higher than that in the high-risk population in the same area (chi(2)=9.017, p<0.01). In conclusion, EC high-risk populations in these three areas share a similar matrilineal genetic background, and D4a and D5a might be candidate genetic markers for screening populations susceptible to EC in the Chaoshan area. Ours is the first report to show the association between mtDNA haplogroups (D4a and D5a) and esophageal cancer.  相似文献   

12.
We report here the clinical, genetic and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. The penetrance of hearing loss (affected matrilineal relatives/total matrilineal relatives) in this pedigree was 53%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in this pedigree was 42%. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA A1555G mutation and other 35 variants belonging to Eastern Asian haplogroup D4. Of these, the V313I (G11696A) mutation in ND4 was associated with vision loss. However, the extremely low penetrance of visual loss, and the mild biochemical defect and the presence of one/167 Chinese controls indicted that the G11696A mutation is itself not sufficient to produce a clinical phenotype. Thus, the G11696A mutation may act in synergy with the primary deafness-associated 12S rRNA A1555G mutation in this Chinese family, thereby increasing the penetrance and expressivity of hearing loss in this Chinese pedigree.  相似文献   

13.
We report here the clinical, genetic, and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Two and 13 of 66 matrilineal relatives suffered from aminoglycoside-induced and nonsyndromic hearing loss, respectively. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. In the absence of aminoglycosides, the age-at-onset of hearing impairment in these matrilineal relatives ranged from 13 to 50years. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA C1494T mutation and other 34 variants belonging to Eastern Asian haplogroup F1. Of these, the variant T5628C occurs at an extremely conserved nucleotide (A31) of tRNA(Ala). This variant converted a very conservative A-U to a G-U base-pairing at AC-stem of this tRNA. The disruption of this base-pairing in tRNAs by mtDNA mutations has been associated with several clinical abnormalities. The alteration of structure of the tRNA(Ala) by the T5628C mutation may lead to a failure in tRNA metabolism and lead to impairment of mitochondrial translation, thereby worsening mitochondrial dysfunctions, caused by the C1494T mutation. Therefore, this mtDNA mutation may influence the phenotypic manifestation of the 12S rRNA C1494T mutation in this Chinese pedigree.  相似文献   

14.
Chen SY  Liu YP  Wang W  Gao CZ  Yao YG  Lai SJ 《Biochemical genetics》2008,46(3-4):206-215
Tongjiang cattle are a local cattle population of Sichuan Province, China, numbering approximately half a million in 2005. They have long been grouped into the Bashan breed, although they have a unique breeding history and phenotypic characteristics, as well as a restricted geographic distribution. Morphologically, they can be divided into two groups based on the basic coat color (black and russet). In order to dissect the matrilineal components of Tongjiang cattle and to compare the body size traits of the two morphological groups, we measured five body size traits among 59 Tongjiang cattle samples and further sequenced the mtDNA D-loop sequence of 54 individuals. Among the 54 mtDNAs, 37 (68.5%) were Bos taurus types and 17 (31.5%) were Bos indicus types. Four known B. taurus haplogroups (T1–T4) and one B. indicus haplogroup (I1) were detected in these samples. Two body size traits differed significantly (P < 0.05) between the black group and the russet group, although the two groups possessed similar matrilineal genetic structure. This is the first report to identify all four B. taurus haplogroups in one local Chinese cattle population. Our results suggest that the contribution of different matrilineal lineages to Chinese cattle might be more complex than we originally thought.  相似文献   

15.
Mitochondrial DNA (mtDNA) is widely used in various genetic studies of domesticated animals. Many applications require comprehensive knowledge about the phylogeny of mtDNA variants. Herein, we provide the most up‐to‐date mtDNA phylogeny (i.e. haplogroup tree or matrilineal genealogy) and a standardized hierarchical haplogroup nomenclature system for domesticated cattle, dogs, goats, horses, pigs, sheep, yaks and chickens. These high‐resolution mtDNA haplogroup trees based on 1240 complete or near‐complete mtDNA genome sequences are available in open resource DomeTree ( http://www.dometree.org ). In addition, we offer the software MitoToolPy ( http://www.mitotool.org/mp.html ) to facilitate the mtDNA data analyses. We will continuously and regularly update DomeTree and MitoToolPy.  相似文献   

16.
Previous studies have shown that there were extensive genetic admixtures in the Silk Road region. In the present study, we analyzed 252 mtDNAs of five ethnic groups (Uygur, Uzbek, Kazak, Mongolian, and Hui) from Xinjiang Province, China (through which the Silk Road once ran) together with some reported data from the adjacent regions in Central Asia. In a simple way, we classified the mtDNAs into different haplogroups (monophyletic clades in the rooted mtDNA tree) according to the available phylogenetic information and compared their frequencies to show the differences among the matrilineal genetic structures of these populations with different demographic histories. With the exception of eight unassigned M*, N*, and R* mtDNAs, all the mtDNA types identified here belonged to defined subhaplogroups of haplogroups M and N (including R) and consisted of subsets of both the eastern and western Eurasian pools, thus providing direct evidence supporting the suggestion that Central Asia is the location of genetic admixture of the East and the West. Although our samples were from the same geographic location, a decreasing tendency of the western Eurasian-specific haplogroup frequency was observed, with the highest frequency present in Uygur (42.6%) and Uzbek (41.4%) samples, followed by Kazak (30.2%), Mongolian (14.3%), and Hui (6.7%). No western Eurasian type was found in Han Chinese samples from the same place. The frequencies of the eastern Eurasian-specific haplogroups also varied in these samples. Combined with the historical records, ethno-origin, migratory history, and marriage customs might play different roles in shaping the matrilineal genetic structure of different ethnic populations residing in this region.  相似文献   

17.
Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.  相似文献   

18.
Previous studies have hypothesised that mitochondrial DNA (mtDNA) polymorphisms may influence aerobic performance. The matrilineal inheritance and accumulation of polymorphisms in mtDNA means that mtDNA haplogroups, characterised by key polymorphisms, are often represented at different frequencies in different populations. The present study aimed to compare the mtDNA haplogroup distribution of elite Ethiopian athletes relative to the general Ethiopian population. The haplogroup distribution of 76 endurance athletes (E), members of the Ethiopian national athletics team, was compared to 108 members of the general Ethiopian population (C). DNA was extracted from buccal swabs and haplogroups assigned by sequencing part of the hypervariable sequence (HVS-I), followed by analysis of key coding-region polymorphisms. A high proportion of African 'L' haplogroups was found in athletes and controls (C=53%; E=55%). Haplogroup distribution of endurance runners did not differ from that of C (P=0.63). Elite Ethiopian athletes are not a mitochondrially distinct group relative to the Ethiopian population. It appears that environment and, perhaps, polymorphisms in the nuclear genome are more important determinants of Ethiopian running success than mtDNA polymorphisms.  相似文献   

19.
Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (~1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di‐Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y‐chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto‐Burman populations (descendants of Di‐Qiang populations) and Han Chinese, suggesting that the Di‐Qiang populations may have contributed to the Han Chinese genetic pool. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号