首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The allosteric transition in triply ferric hemoglobin has been studied with different ferric ligands. This valency hybrid permits observation of oxygen or CO binding properties to the single ferrous subunit, whereas the liganded state of the other three ferric subunits can be varied. The ferric hemoglobin (Hb) tetramer in the absence of effectors is generally in the high oxygen affinity (R) state; addition of inositol hexaphosphate induces a transition towards the deoxy (T) conformation. The fraction of T-state formed depends on the ferric ligand and is correlated with the spin state of the ferric iron complexes. High-spin ferric ligands such as water or fluoride show the most T-state, whereas low-spin ligands such as cyanide show the least. The oxygen equilibrium data and kinetics of CO recombination indicate that the allosteric equilibrium can be treated in a fashion analogous to the two-state model. The binding of a low-spin ferric ligand induces a change in the allosteric equilibrium towards the R-state by about a factor of 150 (at pH 6.5), similar to that of the ferrous ligands oxygen or CO; however, each high-spin ferric ligand induces a T to R shift by a factor of 40.  相似文献   

2.
We report on oxygen binding to partially oxidized (aquomet) hemoglobin. The fractional saturation with oxygen is evaluated by deconvoluting the optical absorption spectra, in the 500-700 nm wavelength region, in terms of oxyhemoglobin, deoxyhemoglobin and methemoglobin spectral components. Experiments have been performed with auto-oxidized samples and with samples obtained by mixing ferrous hemoglobin with fully oxidized hemoglobin (mixed samples). An increase in oxygen affinity and a decrease in cooperativity are observed on increasing the amount of ferric hemoglobin in the sample. A high cooperativity (nH approximately 2) is maintained even in the presence of 50-60% ferric hemes. Moreover, for equal amounts of methemoglobin the oxygen affinity is lower and the cooperativity higher for mixed samples than for those auto-oxidized. The results are analyzed within the framework of a modified Monod-Wyman-Changeux allosteric model taking into account the effects brought about by the presence of oxidized hemes and of alpha betta dimers. The distribution of ferric subunits within the tetramers in fully deoxygenated and fully oxygenated samples, as derived from the model, provides details on the cooperative behavior of partially oxidized hemoglobin.  相似文献   

3.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have developed a rapid and useful method for purification of valency hybrid hemoglobins (alpha 2+ beta 2 and alpha 2 beta 2+: + denotes ferric heme) from a hemoglobin solution oxidized partially with ferricyanide by preparative high-performance liquid chromatography. This method does not involve the separation of hemoglobin subunits and the reconstitution of ferric and partner ferrous subunits. Using the valency hybrid hemoglobins thus prepared, the effect of the ferric spin state on the alpha 1 beta 2 subunit boundary structure was investigated by measuring the ultraviolet difference absorption spectra between the deoxy and the oxy valency hybrids associated with various ferric ligands (fluoride, aquo, azide and cyanide). All derivatives of both alpha 2+ beta 2 and alpha 2 beta 2+ showed the difference spectra characteristic of R-T quaternary structural transition. However, the magnitude of the difference spectral peak observed near 288 nm was larger for high-spin derivatives than for low-spin ones. The magnitude of the peak for the valency hybrid hemoglobin was closely correlated with the difference in the free energy of oxygen binding between the R and T states. Since the R state of high-spin hybrids is considered to be identical to that of low-spin hybrids, we concluded from these results that the alpha 1 beta 2 subunit boundary structure plays an important role in regulating the oxygen affinity of deoxy T state.  相似文献   

5.
Since 2,3-diphosphoglyeerate preferentially binds to deoxygenated hemoglobin A, this binding reaction can be used to detect the change in quaternary conformation of hemoglobin associated with the change in ligand state of the hemes. We have studied the binding to two M hemoglobins (MHydePark, MMilwaukee-1) that have the substituted chains in the ferric state, as well as to the mixed liganded hybrids α12β2 and α2β12 (1 heme in cyanmet form) prepared from hemoglobins A and H. The studies demonstrate that when these hemoglobin variants and derivatives are deoxygenated, they bind the organic phosphate to an extent similar, but not identical, to that for fully deoxygenated hemoglobin A. The results indicate that removal of ligand from only two of the four hemes results in a change in quaternary structure to a deoxy-like conformation.  相似文献   

6.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

7.
Recent crystallographic studies suggested that fully liganded human hemoglobin can adopt multiple quaternary conformations that include the two previously solved relaxed conformations, R and R2, whereas fully unliganded deoxyhemoglobin may adopt only one T (tense) quaternary conformation. An important unanswered question is whether R, R2, and other relaxed quaternary conformations represent different physiological states with different oxygen affinities. Here, we answer this question by showing the oxygen equilibrium curves of single crystals of human hemoglobin in the R and R2 state. In this study, we have used a naturally occurring mutant hemoglobin C (β6 Glu→Lys) to stabilize the R and R2 crystals. Additionally, we have refined the x-ray crystal structure of carbonmonoxyhemoglobin C, in the R and R2 state, to 1.4 and 1.8 Å resolution, respectively, to compare precisely the structures of both types of relaxed states. Despite the large quaternary structural difference between the R and R2 state, both crystals exhibit similar noncooperative oxygen equilibrium curves with a very high affinity for oxygen, comparable with the fourth oxygen equilibrium constant (K4) of human hemoglobin in solution. One small difference is that the R2 crystals have an oxygen affinity that is 2–3 times higher than that of the R crystals. These results demonstrate that the functional difference between the two typical relaxed quaternary conformations is small and physiologically less important, indicating that these relaxed conformations simply reflect a structural polymorphism of a high affinity relaxed state.  相似文献   

8.
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.  相似文献   

9.
Hemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO under physiological hypoxia. The efficiency of this reaction is modulated by two intrinsic and opposing properties: availability of unliganded ferrous hemes and R-state character of the hemoglobin tetramer. Nitrite is reduced by deoxygenated ferrous hemes, such that heme deoxygenation increases the rate of NO generation. However, heme reactivity with nitrite, represented by its bimolecular rate constant, is greatest when the tetramer is in the R quaternary state. The mechanism underlying the higher reactivity of R-state hemes remains elusive. It can be due to the lower heme redox potential of R-state ferrous hemes or could reflect the high ligand affinity geometry of R-state tetramers that facilitates nitrite binding. We evaluated the nitrite reductase activity of unpolymerized sickle hemoglobin (HbS), whose oxygen affinity and cooperativity profile are equal to those of HbA, but whose heme iron has a lower redox potential. We now report that HbS exhibits allosteric nitrite reductase activity with competing proton and redox Bohr effects. In addition, we found that solution phase HbS reduces nitrite to NO significantly faster than HbA, supporting the thesis that heme electronics (i.e. redox potential) contributes to the high reactivity of R-state deoxy-hemes with nitrite. From a pathophysiological standpoint, under conditions where HbS polymers form, the rate of nitrite reduction is reduced compared with HbA and solution-phase HbS, indicating that HbS polymers reduce nitrite more slowly.  相似文献   

10.
Methaemoglobin undergoes a transition to a T-like form at acid pH in the presence of strong effectors such as inositol hexakisphosphate (IHP), as evidenced by spectroscopic and oxidation potential measurements. Since oxygen and CO do not bind to the ferric haems, it is difficult to compare the properties of the R-met and T-met forms with those of ferrous haemoglobin. We have therefore prepared 90% oxidized samples, where the dominant signal for ligand (oxygen or CO) binding is due to tetramers with three met haems. Measurements were made of the oxygen equilibrium curves and CO rebinding kinetics after photodissociation. Without effectors, the partially oxidized samples show mainly R-state properties. Addition of IHP at acid pH induces an increase in T-state behaviour, as indicated by a lower oxygen affinity and a higher fraction of the slow bimolecular component for CO rebinding.  相似文献   

11.
Red blood cell lysis is a common symptom following severe or prolonged oxidative stress. Oxidative processes occur commonly in sickle cells, probably mediated through denatured hemoglobin and the accumulation of ferric hemes in the membranes. Calmodulin-stimulated (Ca2+ + Mg2+)-ATPase from sickle red cell membranes is partially inactivated (Leclerc et al. (1987) Biochim. Biophys. Acta 897, 33-40). In this study (Ca2+ + Mg2+)-ATPase activity from normal adult erythrocyte membranes was measured in the presence of hemin. We report a time- and concentration-dependent inhibition of the activity of the enzyme by hemin due to a decrease in the maximum velocity. Only a mild inhibitory effect was observed in the presence of iron-free protoporphyrin IX, indicating the catalytic influence of the iron. Experiments carried out with hemin (ferric iron) liganded with imidazole or with reduced protoheme (ferrous iron) liganded with carbon monoxide, demonstrated that the inhibition requires that hemin be capable of binding additional ligands. The inhibition was not influenced by the absence of oxygen but was prevented by addition of bovine serum albumin. Addition of butylated hydroxytoluene, a protective agent of lipid peroxidation, failed to prevent the inhibition of calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. As dithiothreitol partially restores the enzyme activity, we postulated that hemin interacts with the thiol groups of the enzyme.  相似文献   

12.
This paper reports on a study of the effect of partial oxidation on oxygen and carbon monoxide binding by components I and IV of trout hemoglobin. The O2 binding equilibria of the various oxidation mixtures show a decrease in the heme-heme interactions as the number of oxidized sites is increased. However, the large Bohr effect, characteristic of Hb Trout IV, is maintained unchanged. Similarly the time course of CO combination changes on increasing the fractional oxidation, and the autocatalytic character of the CO binding kinetics is lost; however the pH dependence of the apparent "on" constant in the oxidation mixtures is similar to that characteristic of the native molecule. The results of the O2 equilibria and of CO binding kinetics may be interpreted in accordance with the two state concerted model suggesting that in the oxidation intermediates there is an increase in the fraction of the high affinity (R) conformation. Additional experiments on the effect of azide, and fluoride, ferric ligands which produce a change of spin state of the heme iron, suggest that additional second order conformational changes may also come into play.  相似文献   

13.
31P-NMR of trimethylphosphine binding to the ferrous chains of a ([alpha Fe(II), beta Mn(II)]hemoglobin hybrid is employed to investigate partially liganded species. This study shows that at low pH (6.5), in the presence of inositol hexaphosphate, the resonance at 23.2 ppm (from H3PO4) is due to phosphine bonding to alpha-chains in the T quaternary state. At elevated pH (7.6), phosphine binding to the alpha-chains produces a resonance at 24.8 ppm which is associated with a T-to-R conversion. These findings are discussed in relation with our previous results on direct observation of intermediate ligation states of hemoglobin.  相似文献   

14.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》1999,38(18):5913-5917
Cytochrome bd is a two-subunit ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli and binds hemes b558, b595, and d as the redox metal centers. Taking advantage of spectroscopic properties of three hemes which exhibit distinct absorption peaks, we investigated electron transfer within the enzyme by the technique of pulse radiolysis. Reduction of the hemes in the air-oxidized, resting-state enzyme, where heme d exists in mainly an oxygenated form and partially an oxoferryl and a ferric low-spin forms, occurred in two phases. In the faster phase, radiolytically generated N-methylnicotinamide radicals simultaneously reduced the ferric hemes b558 and b595 with a second-order rate constant of 3 x 10(8) M-1 s-1, suggesting that a rapid equilibrium occurs for electron transfer between two b-type hemes long before 10 micros. In the slower phase, an intramolecular electron transfer from heme b to the oxoferryl and the ferric heme d occurred with the first-order rate constant of 4.2-5.6 x 10(2) s-1. In contrast, the oxygenated heme d did not exhibit significant spectral change. Reactions with the fully oxidized and hydrogen peroxide-treated forms demonstrated that the oxidation and/or ligation states of heme d do not affect the heme b reduction. The following intramolecular electron transfer transformed the ferric and oxoferryl forms of heme d to the ferrous and ferric forms, respectively, with the first-order rate constants of 3.4 x 10(3) and 5.9 x 10(2) s-1, respectively.  相似文献   

15.
The four components of hemoglobin from the rainbow trout (Salmo gairdneri) have been isolated. The oxygen affinities of the first two components eluted from the DEAE-cellulose column have much smaller pH dependencies than the last two components. These components have very low O2 affinities at low pH. The effect of pH on the equilibrium and kinetics of ligand binding to the third fraction, the pH-dependent component present in greatest amounts, has been studied. Measurements of ligand binding equilibria demonstrate the presence of both an alkaline and an acid Bohr effect. In the region of the alkaline Bohr effect the value of n in the Hill equation is a function of ligand affinity. For CO binding n decreases as the pH is decreased until at pH 6, the minimum ligand affinity is reached. At this pH there is also a complete loss of cooperative ligand binding. Decreasing the pH further results in an increase of ligand affinity, but this acid Bohr effect is not associated with a reappearance of cooperativity. This suggests that Fraction 3 of S. gairdneri is frozen in the low affinity, deoxygenated conformation at low pH and that the quaternary structure does not change even when fully liganded. However, the properties of the low affinity conformation of this hemoglobin are pH-dependent.  相似文献   

16.
Hemoglobin Ypsilanti (HbY) is a stable tetrameric hemoglobin that binds oxygen with little or no cooperativity and with high affinity [Doyle, M. L., et al. (1992) Proteins: Struct., Funct., Genet. 14, 351-362]. It displays an especially large quaternary enhancement effect. An X-ray crystallographic study [Smith, F. R., et al. (1991) Proteins: Struct., Funct., Genet. 10, 81-91] of the carboxy derivative of this hemoglobin (COHbY) revealed a new quaternary structure that partially resembles the recently described R2 structure [Silva, M. M., et al. (1992) J. Biol. Chem. 267, 17248-17256]. Very little is known about either the solution phase conformations of the liganded and deoxy forms of HbY or the molecular basis for the large quaternary enhancement effect (Doyle et al., 1992). In this study, near-IR absorption, Soret-enhanced Raman, and UV (229 nm) resonance Raman spectroscopies are used to probe the liganded and deoxy derivatives of HbY in solution. Nanosecond time-resolved near-IR absorption measurements are used to expose the relaxation properties of the photoproduct of COHbY. Time-resolved (Soret band) absorption is used to generate the geminate and solvent phase ligand rebinding curves for photodissociated COHbY. The spectroscopic results indicate that COHbY has an R-like conformation with respect to both the proximal heme pocket and the hinge region of the alpha 1 beta 2 interface. The deoxy derivative of HbY has spectroscopic features that are very similar to those observed for species assigned to the deoxy R or half-liganded R conformations of human adult hemoglobin (HbA). The 10 ns to 100 micros relaxation properties of the photoproduct of COHbY are distinctly different from those of HbA in that for HbY, little if any tertiary or quaternary relaxation is observed. The near-absence of relaxation in the HbY photoproduct explains the differences in the geminate and solvent phase CO recombination between HbA and HbY. The impact of the conformational and relaxation properties of HbY on the geminate rebinding process forms the basis of a model that accounts for the large quaternary enhancement effect reported for HbY (Doyle et al., 1992). In addition, the spectroscopic data and the X-ray crystallographic results explain the slow relaxation for HbY and the near-absence of cooperative ligand binding for this protein based on the behavior of the penultimate tyrosines.  相似文献   

17.
Using modulated excitation, we have measured the forward and reverse rates of the allosteric transition between relaxed (R) and tense (T) quaternary structures for triply ligated hemoglobin (Hb), cross-linked between the alpha chains at Lys 99. Oxygen, carbon monoxide, and water were used as ligands and were studied in phosphate and low Cl- bis-Tris buffers at neutral pH. Since the cross-link prohibits disproportionation, triply ligated aquomet Hb species with ferrous beta chains were specifically isolated by isoelectric focusing. Modulated excitation provides rate pairs and therefore gives equilibrium constants between quaternary structures. To coordinate with that information, oxygen binding curves of fully ferrous and tri-aquomet Hb were also measured. L3, the equilibrium constant between three liganded R and T structures, is determined by modulated excitation to be of order unity for O2 or CO (1.1 to 1.5 for 3O2 and 0.7 for 3CO bound), while with three aquomet subunits it is much greater (> or = 23). R-->T conversion rates are similar to those found for HbA, with weak sensitivity to changes in L3. The L3 values from HbXL O2 were used to obtain a unique allosteric decomposition of the ferrous O2 binding curve in terms of KT, KR, and L3. From these values and the O2 binding curve of tri-aquomet HbXL, L3 was calculated to be 2.7 for the tri-aquomet derivative. Consistency in L3 values between equilibrium and modulated excitation data for tri-aquomet-HbXL can be achieved if the equilibrium constant for O2 binding to the alpha chains is six times lower than that for binding to the beta chains in the R state, while the cooperative properties remain homogeneous. The results are in quantitative agreement with other studies, and suggest that the principal effect of the cross-link is to decrease the R state and T state affinity of the alpha subunits with almost no change in the affinity of the beta subunits, leaving the allosteric parameters L and c unchanged.  相似文献   

18.
The EPR absorption properties of the hemes of cytochrome oxidase and their liganded derivatives were examined in oriented multilayers from isolated oxidase, mitochondrial membranes and membrane fragments of a bacterium, Paracoccus denitrificans. The hemes of the oxidase in all the systems investigated were oriented normal to the plane of the multilayers. The directions of the g signals corresponding to the gx and gy axes of the g tensor were found to be different in low-spin ferric heme in fully oxidized oxidase and in half-reduced liganded oxidase. It is suggested that this different orientation of gx and gy in fully oxidized oxidase and half-reduced liganded oxidase arises because the respective EPR signals belong to two different hemes, those of cytochrome a and a3.  相似文献   

19.
Hemoglobin (Hb) is in equilibrium between low affinity Tense (T) and high affinity Relaxed (R) states associated with its unliganded and liganded forms, respectively. Mammalian species can be classified into two groups on the basis of whether they express ‘high’ and ‘low’ oxygen affinity Hbs. Although Hbs from former group have been studied extensively, a limited number of structural studies have been performed for the low oxygen affinity Hbs. Here, the crystal structure of low oxygen affinity sheep methemoglobin (metHb) has been determined to 2.7 Å resolution. Even though sheep metHb adopts classical R state like quaternary structure, it shows localized quaternary and tertiary structural differences compared with other liganded Hb. The critical group of residues in the “joint region”, shown as a major source of quaternary constraint on deoxyHb, formed unique interactions in the α1β2/α2β1 interfaces of sheep metHb structure. In addition, the constrained β subunits heme environment and the contraction of N-termini and A-helices of β subunits towards the molecular dyad are observed for sheep metHb structure. These observations provide the structural basis for a low oxygen affinity and blunt response to allosteric effector of sheep Hb.  相似文献   

20.
M Wind  A Stern  S Simon  L Law 《Biochemistry》1976,15(23):5161-5167
The pH dependence of several functional properties of human fetal and adult hemoglobins have been studied to determine the relative stabilities of the high and low affinity (R and T) quaternary conformations of the two proteins under different conditions. Fetal aqumethemoglobin undergoes changes in sulfhydryl reactivity, absorption spectrum, and circular dichroism in the presence of insitol hexaphospahte which are consistent with a transition from the R to T quaternary state, but only at pH values below 6.8. In adult hemoglobin this transition can be induced pH values below 7.2. Even in the absence of phosphates, the ultraviolet (uv) circular dichroism spectrum of fetal aquomethemoglobin at low pH indicates the presence of some T conformation. The initial value for the second-order rate constant for combination of fetal deoxyhemoglobin with carbon monoxide is comparable to that for adult hemoglobin in the absence of organic phosphates and is not reduced by organic phosphates as much as that for the adult protein. The apparent first-order rate constant for dissociation of CO from fully liganded fetal hemoglobin, measured by replacement with NO, increases threefold in the absence of organic phosphates, and fourfold in the presence of organic phosphates, with decreasing pH; the midpoint of the pH dependent transition occurs around 6.8. A similar increase in the apparent first-order rate constant for O2 dissociation as measured by replacement with CO, can also be seen with decreasing pH. NO-hemoglobin F can be converted to the T state even when fully liganded simply by lowering the pH, as judged by uv circular dichroism, visible difference spectrum in the region of the alpha and beta bands, and a dramatic increase in the rate of NO dissociation, measured by replacement with CO in the presence of dithionite. These results are all consistent with a model for fetal hemoglobin in which the organic phosphate site may be functionally weakened by replacement of a residue involved in ionic interactions with the negatively charged phosphate groups, but in which the low affinity T conformation is intrinsically more stable than that of adllt hemoglobin. According to this model,the differences between fetal and adult hemoglobin can be accounted for primarily in terms of the relative stabilities of R and T conformations in each of the proteins with differences in the intrinsic properties of the individual conformations contributing effects of only secondary importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号