首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang F  Li F  Ganguly M  Marky LA  Gold B  Egli M  Stone MP 《Biochemistry》2008,47(27):7147-7157
Site-specific insertion of 5-(3-aminopropyl)-2'-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7)T (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19)T (20)C (21) Z (22)C (23)G (24))-3' (named DDD (Z10)) and 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7) X (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19) X (20)C (21) Z (22)C (23)G (24))-3' (named DDD (2+Z10)) (X = Z3dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.g., melphalan and mechlorethamine. Analysis of the DDD (2+Z10) duplex reveals that the tethered cations at base pairs A (5).X (20) and X (8).A (17) extend within the major groove in the 3'-direction, toward conserved Mg (2+) binding sites located adjacent to N+2 base pairs C (3).Z (22) and Z (10).C (15). Bridging waters located between the tethered amines and either Z (10) or Z (22) O (6) stabilize the tethered cations and allow interactions with the N + 2 base pairs without DNA bending. Incorporation of 7-deaza-dG into the DDD (2+Z10) duplex weakens but does not eliminate electrostatic interactions between tethered amines and Z (10) O (6) and Z (22) O (6). The results suggest a mechanism by which tethered N7-dG aziridinium ions, the active species involved in formation of interstrand 5'-GNC-3' cross-links by nitrogen mustards, modify the electrostatics of the major groove and position the aziridinium ions proximate to the major groove edge of the N+2 C.G base pair, facilitating interstrand cross-linking.  相似文献   

2.
Li Z  Kim HY  Tamura PJ  Harris CM  Harris TM  Stone MP 《Biochemistry》1999,38(49):16045-16057
The (1S,2R,3S,4R)-N(6)-[1-(1,2,3,4-tetrahydro-2,3, 4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X6 of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, results from trans opening of (1R,2S,3S,4R)-1,2-epoxy-1,2,3, 4-tetrahydrobenz[a]anthracenyl-3,4-diol by the exocyclic N6 of adenine. Two conformations of this adduct exist, in slow exchange on the NMR time scale. A structure for the major conformation, which represents approximately 80% of the population, is presented. In this conformation, an anti glycosidic torsion angle is observed for all nucleotides, including S,R,S,RA6. The refined structure is a right-handed duplex, with the benz[a]anthracene moiety intercalated on the 3'-face of the modified base pair, from the major groove. It is located between S,R,S,RA6.T17 and A7.T16. Intercalation is on the opposite face of the modified S,R,S,RA6.T17 base pair as compared to the (1R,2S,3R,4S)-N6-[1-(1,2,3,4-tetrahydro-2, 3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct, which intercalated 5' to the modified R,S,R,SA6.T17 base pair [Li, Z. , Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981]. The spectroscopic data do not allow refinement of the minor conformation, but suggest that the adenyl moiety in the modified nucleoti111S,R, S,RA6 adopts a syn glycosidic torsion angle. Thus, the minor conformation may create greater distortion of the DNA duplex. The results are discussed in the context of site-specific mutagenesis studies which reveal that the S,R,S,RA6 lesion is less mutagenic than the R,S,R,SA6 lesion.  相似文献   

3.
Wang Y  Musser SK  Saleh S  Marnett LJ  Egli M  Stone MP 《Biochemistry》2008,47(28):7322-7334
1, N (2)-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-beta- d- erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3 H)-one (M 1dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 A. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring template dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5'-TCACXAAATCCTTACGAGCATCGCCCCC-3'.5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the "type II" structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91-102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M 1dG adduct formed by malondialdehyde.  相似文献   

4.
The structure of the bay region (1R,2S,3R,4S)-N6-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X(7) of 5'-d(CGGACAXGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, was determined by NMR. This was the bay region benz[a]anthracene RSRS (61,3) adduct. The BA moiety intercalated above the 5'-face of the modified base pair. NOE connectivities between imino protons were disrupted at T16 and T17. Large chemical shifts at the lesion site were consistent with ring current shielding arising from the BA moiety. A large chemical shift dispersion was observed for the BA aromatic protons. An increased rise of 8.17 A was observed between base pairs A6 x T17 and X7 x T(16). The PAH moiety stacked with the purine ring of A6, the 5'-neighbor nucleotide. This resulted in buckling of the 5'-neighbor A6 x T17 base pair, evidenced by exchange broadening for the T17 imino resonance. It also interrupted sequential NOE connectivities between nucleotides C5 and A6. The A6 deoxyribose ring showed an increased percentage of the C3'-endo conformation. This differed from the bay region BA RSRS (61,2) adduct, in which the lesion was located at position X6 [Li, Z., Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981], but was similar to the benzo[a]pyrene BP SRSR (61,3) adduct [Zegar I. S., Chary, P., Jabil, R. J., Tamura, P. J., Johansen, T. N., Lloyd, R. S., Harris, C. M., Harris, T. M., and Stone, M. P. (1998) Biochemistry 37, 16516-16528]. The altered sugar pseudorotation at A6 appears to be common to both bay region BA RSRS (61,3) and BP SRSR (61,3) adducts. It could not be discerned if the C3'-endo conformation at A6 in the BA RSRS (61,3) adduct altered base pairing geometry at X7 x T16, as compared to the C2'-endo conformation. The structural studies suggest that the mutational spectrum of this adduct may be more complex than that of the BA RSRS (61,2) adduct.  相似文献   

5.
Huang H  Wang H  Qi N  Lloyd RS  Rizzo CJ  Stone MP 《Biochemistry》2008,47(44):11457-11472
The trans-4-hydroxynonenal (HNE)-derived exocyclic 1, N(2)-dG adduct with (6S,8R,11S) stereochemistry forms interstrand N(2)-dG-N(2)-dG cross-links in the 5'-CpG-3' DNA sequence context, but the corresponding adduct possessing (6R,8S,11R) stereochemistry does not. Both exist primarily as diastereomeric cyclic hemiacetals when placed into duplex DNA [Huang, H., Wang, H., Qi, N., Kozekova, A., Rizzo, C. J., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 10898-10906]. To explore the structural basis for this difference, the HNE-derived diastereomeric (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were examined with respect to conformation when incorporated into 5'-d(GCTAGC XAGTCC)-3' x 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpX-3' sequence [X = (6S,8R,11S)- or (6R,8S,11R)-HNE-dG]. At neutral pH, both adducts exhibited minimal structural perturbations to the DNA duplex that were localized to the site of the adduction at X(7) x C(18) and its neighboring base pair, A(8) x T(17). Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were located within the minor groove of the duplex. However, the respective orientations of the two cyclic hemiacetals within the minor groove were dependent upon (6S) versus (6R) stereochemistry. The (6S,8R,11S) cyclic hemiacetal was oriented in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal was oriented in the 3'-direction. These cyclic hemiacetals effectively mask the reactive aldehydes necessary for initiation of interstrand cross-link formation. From the refined structures of the two cyclic hemiacetals, the conformations of the corresponding diastereomeric aldehydes were predicted, using molecular mechanics calculations. Potential energy minimizations of the duplexes containing the two diastereomeric aldehydes predicted that the (6S,8R,11S) aldehyde was oriented in the 5'-direction while the (6R,8S,11R) aldehyde was oriented in the 3'-direction. These stereochemical differences in orientation suggest a kinetic basis that explains, in part, why the (6S,8R,11S) stereoisomer forms interchain cross-links in the 5'-CpG-3' sequence whereas the (6R,8S,11R) stereoisomer does not.  相似文献   

6.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

7.
Z Li  H Y Kim  P J Tamura  C M Harris  T M Harris  M P Stone 《Biochemistry》1999,38(45):14820-14832
The structure of the non-bay region (8S,9R,10S,11R)-N(6)-[11-(8,9,10, 11-tetrahydro-8,9,10-trihydroxybenz[a]anthracenyl)]-2'-de oxyadenosyl adduct at X(6) of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, was determined. Molecular dynamics simulations were restrained by 475 NOEs from (1)H NMR. The benz[a]anthracene moiety intercalated above the 5'-face of the modified base pair and from the major groove. The duplex suffered distortion at and immediately adjacent to the adduct site. This was evidenced by the disruption of the Watson-Crick base pairing for X(6) x T(17) and A(7) x T(16) and the increased rise of 7.7 A between base pairs C(5) x G(18) and X(6) x T(17). Increased disorder was observed as excess line width of proton resonances near the lesion site. Comparison with the bay region benzo[a]pyrene [Zegar, I. S., Kim, S. J., Johansen, T. N., Horton, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1996) Biochemistry 35, 6212-6224] and bay region benz[a]anthracene [Li, Z., Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981] adducts with the corresponding stereochemistry and at the same site shows that this non-bay region benz[a]anthracene lesion assumes different base pair geometry, in addition to exhibiting greater disorder. These differences are attributed to the loss of the bay region ring. The results suggest the bay region ring contributes to base stacking interactions at the lesion site. These structural differences between the non-bay and bay region lesions are correlated with site-specific mutagenesis data. The bay region benzo[a]pyrene and bay region benz[a]anthracene adducts were poorly replicated in vivo, and induced A --> G mutations. In contrast, the non-bay region benz[a]anthracene adduct was easily bypassed in vivo and was nonmutagenic.  相似文献   

8.
The solution structure of an 11-mer DNA duplex, d(CGGTCA*CGAGG) x d(CCTCGTGACCG), containing a 10R adduct at dA* that corresponds to the cis addition of the N(6)-amino group of dA(6) to (+)-(9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene was studied by 2D NMR methods. The NOESY cross-peak patterns indicate that the hydrocarbon is intercalated on the 5'-side of the modified base. This observation is the same as that observed for other oligonucleotides containing (10R)-dA adducts but opposite to that observed for the corresponding (10S)-dA adducts which are intercalated on the 3'-side of the modified base. The hydrocarbon is intercalated from the major groove without significant disruption of either the anti glycosidic torsion angle of the modified residue or the base pairing of the modified residue with the complementary residue on the opposite strand. The ensemble of 10 structures determined exhibits relatively small variations (6-15 degrees) in the characteristic hydrocarbon-base dihedral angles (alpha' and beta') as well as the glycosidic torsion angle chi. These angles are similar to those in a previously determined cis-opened benzo[a]pyrene diol epoxide-(10R)-dA adduct structure. Comparison of the present structure with the cis-opened diol epoxide adduct suggests that the absence of the 7- and 8-hydroxyl groups results in more efficient stacking of the aromatic moiety with the flanking base pairs and deeper insertion of the hydrocarbon into the helix. Relative to normal B-DNA, the duplex containing the present tetrahydroepoxide adduct is unwound at the lesion site, whereas the diol epoxide adduct structure is more tightly wound than normal B-DNA. Buckling of the adducted base pair as well as the C(5)-G(18) base pair that lies immediately above the hydrocarbon is much less severe in the present adducted structure than its cis-opened diol epoxide counterpart.  相似文献   

9.
Li Z  Mao H  Kim HY  Tamura PJ  Harris CM  Harris TM  Stone MP 《Biochemistry》1999,38(10):2969-2981
The solution structure of the (-)-(1R,2S,3R,4S)-N6-[1-(1,2,3, 4-tetrahydroxy-benz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X6 of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61(italic), and 62 of the human N-ras protooncogene, was determined. This adduct results from the trans opening of 1S,2R,3R,4S-1, 2-epoxy-1,2,3,4-tetrahydro-benz[a]anthracenyl-3,4-diol by the exocyclic N6 of adenine. Molecular dynamics simulations were restrained by 509 NOEs from 1H NMR. The precision of the refined structures was monitored by pairwise root-mean-square deviations which were <1.2 A; accuracy was measured by complete relaxation matrix calculations, which yielded a sixth root R factor of 9.1 x 10(-)2 at 250 ms. The refined structure was a right-handed duplex, in which the benz[a]anthracene moiety intercalated from the major groove between C5.G18 and R,S,R,SA6.T17. In this orientation, the saturated ring of BA was oriented in the major groove of the duplex, with the aromatic rings inserted into the duplex such that the terminal ring of BA threaded the duplex and faced toward the minor groove direction. The duplex suffered localized distortion at and immediately adjacent to the adduct site, evidenced by the increased rise of 8.8 A as compared to the value of 3.5 A normally observed for B-DNA between base pairs C5.G18 and R,S,R,SA6.T17. These two base pairs also buckled in opposite directions away from the intercalated BA moiety. The refined structure was similar to the (-)-(7S,8R,9S,10R)-N6-[10-(7,8,9, 10)-tetrahydrobenzo[a]pyrenyl)]-2'-deoxyadenosyl adduct of corresponding stereochemistry at X6 of the same oligodeoxynucleotide [Zegar, I. S., Kim, S. J., Johansen, T. N., Horton, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1996) Biochemistry 35, 6212-6224]. Both adducts intercalated toward the 5'-direction from the site of adduction. The similarities in solution structures were reflected in similar biological responses, when repair-deficient AB2480 Escherichia coli were transformed with M13mp7L2 DNA site-specifically modified with these two adducts.  相似文献   

10.
We have used nuclear magnetic resonance (NMR) spectroscopy to measure the lifetimes of individual base-pairs in the palindromic DNA oligonucleotide 5'-d(CGCGAATTCGCG)-3' and in three other dodecamers with symmetrical base substitutions in the sites underlined. The resonances of the hydrogen-bonded imino protons in each of the substituted oligomers in the duplex form have been assigned using one dimensional nuclear Overhauser effect (1-D NOE) experiments. The lifetimes have been obtained from the dependence of selective longitudinal relaxation times and linewidths of the imino proton resonances on the concentration of base catalyst (Tris) at 25 degrees C and in the presence of 50 mM NaCl. The lifetimes of the central A.T base-pairs have been found to depend on base sequence. They are greatly increased in the dodecamer 5'-d(CGCAAATTTGCG)-3' which contains an A3T3 tract. The lifetimes of the central A.T base-pairs in 5'-d(CGCGAATTCGCG)-3', 5'-d(CGCTAATTAGCG)-3' and 5'-d(CGCCAATTGGCG)-3' are comparable. In all dodecamers, the lifetime of the A.T base-pair at the 5'-end of the AnTn tract is the shortest. The anomalous opening kinetics of the A.T base-pairs can be correlated to the bending properties of the corresponding sequences.  相似文献   

11.
Pradhan P  Tirumala S  Liu X  Sayer JM  Jerina DM  Yeh HJ 《Biochemistry》2001,40(20):5870-5881
Two-dimensional NMR was used to determine the solution structure of an undecanucleotide duplex, d(CGGTCACGAGG).d(CCTCGTGACCG), in which (+)-(7S,8R,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is covalently bonded to the exocyclic N(6)() amino group of the central deoxyadenosine, dA(6), through trans addition at C10 of the epoxide (to give a 10S adduct). The present study represents the first NMR structure of a benzo[a]pyrene (10S)-dA adduct in DNA with a complementary T opposite the modified dA. Exchangeable and nonexchangeable protons of the modified duplex were assigned by the use of TOCSY (in D(2)O) and NOESY spectra (in H(2)O and D(2)O). Sequential NOEs expected for a B-type DNA conformation with typical Watson-Crick base pairing are observed along the duplex, except at the lesion site. We observed a strong intraresidue NOE cross-peak between H1' and H8 of the modified dA(6). The sugar H2' and H2' ' of dC(5) lacked NOE cross-peaks with H8 of dA(6) but showed weak interactions with H2 of dA(6) instead. In addition, the chemical shift of the H8 proton (7.51 ppm) of dA(6) appears at a higher field than that of H2 (8.48 ppm). These NOE and chemical shift data for the dA(6) base protons are typical of a syn glycosidic bond at the modified base. Restrained molecular dynamics/energy minimization calculations show that the hydrocarbon is intercalated from the major groove on the 3'-side of the modified base between base pairs A(6)-T(17) and C(7)-G(16) and confirm the syn glycosidic angle (58 degrees ) of the modified dA(6). In the syn structure, a weak A-T hydrogen bond is possible between the N3-H proton of T(17) and N7 of dA(6) (at a distance of 3.11 A), whereas N1, the usual hydrogen bonding partner for N3-H of T when dA is in the anti conformation, is 6.31 A away from this proton. The 10(S)-dA modified DNA duplex remains in a right-handed helix, which bends in the direction of the aliphatic ring of BaP at about 42 degrees from the helical axis. ROESY experiments provided evidence for interconversion between the major, syn conformer and a minor, possibly anti, conformer.  相似文献   

12.
Giri I  Stone MP 《Biochemistry》2003,42(23):7023-7034
The structure of 5'-d(ACATC(AFB)GATCT)-3'.5'-d(AGATCAATGT)-3', containing the C(5).A(16) mismatch at the base pair 5' to the modified (AFB)G(6), was determined by NMR. The characteristic 5'-intercalation of the AFB(1) moiety was maintained. The mismatched C(5).A(16) pair existed in the wobble conformation, with the C(5) imino nitrogen hydrogen bonded to the A(16) exocyclic amino group. The wobble pair existed as a mixture of protonated and nonprotonated species. The pK(a) for protonation at the A(16) imino nitrogen was similar to that of the C(5).A(16) wobble pair in the corresponding duplex not adducted with AFB(1). Overall, the presence of AFB(1) did not interfere with wobble pair formation at the mismatched site. Molecular dynamics calculations restrained by distances derived from NOE data and torsion angles derived from (1)H (3)J couplings were carried out for both the protonated and nonprotonated wobble pairs at C(5).A(16). Both sets of calculations predicted the A(16) amino group was within 3 A of the C(5) imino nitrogen. The calculations suggested that protonation of the C(5).A(16) wobble pair should shift C(5) toward the major groove and shift A(16) toward the minor groove. The NMR data showed evidence for the presence of a minor conformation characterized by unusual NOEs between T(4) and (AFB)G(6). T(4) is two nucleotides in the 5'-direction from the modified base. These NOEs suggested that in the minor conformation nucleotide T(4) was in closer proximity to (AFB)G(6) than would be expected for duplex DNA. Modeling studies examined the possibility that T(4) transiently paired with the mismatched A(16), allowing it to come within NOE distance of (AFB)G(6). This model structure was consistent with the unusual NOEs associated with the minor conformation. The structural studies are discussed in relationship to nontargeted C --> T transitions observed 5' to the modified (AFB)G in site-specific mutagenesis experiments [Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M., and Essigmann, J. M. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 1535-1539].  相似文献   

13.
2-Acetoxyamino-6-methyldipyrido[1,2-a:3',2'-d]imidazole binds covalently to the 8 position of guanine residues in DNA. Treatment of the modified DNA with aqueous piperidine causes the liberation of the modified nucleic acid base, 2-(C8-guanyl)amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, and cleavage of DNA at the sites of the modified guanylic acid residues. By use of 5'-end 32P-labelled DNA and sequence analysing gel electrophoresis, we discovered the base sequence specificity of DNA modification with 2-acetoxyamino-6-methyldipyrido[1,2-a:3',2'-d]imidazole. The guanine residues in G-C cluster-like regions are modified more frequently.  相似文献   

14.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

15.
J G Moe  I M Russu 《Biochemistry》1992,31(36):8421-8428
Proton nuclear magnetic resonance (NMR) spectroscopy is used to characterize the kinetics and energetics of base-pair opening in the dodecamers 5'-d(CGCGAATTCGCG)-3' and 5'-d(CGCGAATTTGCG)-3'. The latter dodecamer contains two symmetrical G.T mismatched base pairs. The exchange kinetics of imino protons is measured from resonance line widths and selective longitudinal relaxation times. For the G.T pair, the two imino protons (G-N1H and T-N3H) provide probes for the opening of each base in the mismatched pair. The lifetimes of individual base pairs in the closed state and the equilibrium constants for formation of the open state are obtained from the dependence of the exchange rates on the concentration of ammonia catalyst. The activation energies and standard enthalpy changes for base-pair opening are obtained from the temperature dependence of the lifetimes and equilibrium constants, respectively. The results indicate that the G.T mismatched pairs are kinetically and energetically destabilized relative to normal, Watson-Crick base pairs. The lifetimes of the G.T pairs are of the order of 1 ms or less, over the temperature range from 0 to 20 degrees C. The equilibrium constants for base-pair opening, at 20 degrees C, are increased up to 4000-fold, relative to those of normal base pairs. The energetic destabilization of the G.T base pairs is, at least in part, enthalpic in origin. The presence of the G.T mismatched base pairs destabilizes also neighboring base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We studied the properties of DNA duplexes containing 5-nitroindole (N) in one of the chains. We synthesized 8-membered oligos with N at the 5' or at the 3' end: 5'-d(NXGACCGTC)-3' or 5'-d(GACCGTCXN)-3', where X is one of the four natural bases, making all four kinds of oligos with and without N. We also prepared 11-membered oligos complementary to the above octanucleotides: 5'-d(TGACGGTCYZT)-3' and 5'-d(TZYGACGGTCT)-3', where Y and Z are A, G, C, or T. The stability of duplexes obtained with these oligos was assessed by melting, and the thermodynamic parameters delta H, delta S, and Tm were calculated. Comparison of the melting curves for modified and nonmodified duplexes demonstrated that the presence of N at the 5' end of one chain raises the Tm by 6.6 degrees C on average; if N is at the 3' end of the same chain, the Tm increases by about 3 degrees C.  相似文献   

17.
Structural feasibility and conformational requirements for the sequence 5'-d-GGTACIAGTACC-3' to adopt a hairpin loop with I6 and A7 in the loop are studied. It is shown that a hairpin loop containing only two nucleotides can readily be formed without any unusual torsional angles. Stacking is continued on the 5'-side of the loop, with the I6 stacked upon C5. The base A7, on the 3'-side of the loop, can either be partially stacked with I6 or stick outside without stacking. Loop closure can be achieved for both syn and anti conformations of the glycosidic torsions for G8 while maintaining the normal Watson-Crick base pairing with the opposite C5. All torsional angles in the stem fall within the standard B-family of DNA helical structures. The phosphodiesters of the loop have trans,trans conformations. Loop formation might require the torsion about the C4'-C5' bond of G8 to be trans as opposed to the gauche+ observed in B-DNA. These results are discussed in relation to melting temperature studies [Howard et al. (1991) Biochemistry (preceding paper in this issue)] that suggest the formation of very stable hairpin structures for this sequence.  相似文献   

18.
DNA damage caused by catechol estrogens has been shown to play an etiologic role in tumor formation. Catechol estrogens are reactive to DNA and form several DNA adducts via their quinone forms. To explore the mutagenic properties of 2-hydroxyestrogen-derived DNA adducts in mammalian cells, N(2)-(2-hydroxyestrogen-6-yl)-2'-deoxyguanosine and N(6)-(2-hydroxyestrogen-6-yl)-2'-deoxyadenosine adducts induced by quinones of 2-hydroxyestrone, 2-hydroxyestradiol, or 2-hydroxyestriol were incorporated site-specifically into the oligodeoxynucleotides ((5)(')TCCTCCTCXCCTCTC, where X is dG, dA, 2-OHE-N(2)-dG, or 2-OHE-N(6)-dA). The modified oligodeoxynucleotides were inserted into single-stranded phagemid vectors followed by transfection into simian kidney (COS-7) cells. Preferential incorporation of dCMP, the correct base, was observed opposite all 2-OHE-N(2)-dG adducts. Only targeted G --> T transversions were detected; the highest mutation frequency (18.2%) was observed opposite the 2-OHE(2)-N(2)-dG adduct, followed by 2-OHE(1)-N(2)-dG (4.4%) and 2-OHE(3)-N(2)-dG (1.3%). When 2-OHE-N(6)-dA adducts were used, preferential incorporation of dTMP, the correct base, was observed. Targeted mutations representing A --> T transversions were detected, accompanied by small numbers of A --> G transitions. The highest mutation frequencies were observed with 2-OHE(1)-N(6)-dA and 2-OHE(3)-N(6)-dA (14.5 and 14.1%, respectively), while 2-OHE(2)-N(6)-dA exhibited a mutation frequency of only 6.0%. No mutations were detected with vectors containing unmodified oligodeoxynucleotides. Thus, 2-OHE quinone-derived DNA adducts are mutagenic, generating primarily G --> T and A --> T mutations in mammalian cells. The mutational frequency varied depending on the nature of the 2-OHE moiety.  相似文献   

19.
Chen J  Dupradeau FY  Case DA  Turner CJ  Stubbe J 《Biochemistry》2007,46(11):3096-3107
A 4'-oxidized abasic site (X) has been synthesized in a defined duplex DNA sequence, 5'-d(CCAAAGXACCGGG)-3'/3'-d(GGTTTCATGGCCC)-5' (1). Its structure has been determined by two-dimensional NMR methods, molecular modeling, and molecular dynamics simulations. 1 is globally B-form with the base (A) opposite X intrahelical and well-stacked. Only the alpha anomer of X is observed, and the abasic site deoxyribose is largely intrahelical. These results are compared with a normal abasic site (Y) in the same sequence context (2). Y is composed of a 60:40 mixture of alpha and beta anomers (2alpha and 2beta). In both 2alpha and 2beta, the base (A) opposite Y is intrahelical and well-stacked and the abasic site deoxyribose is predominantly extrahelical, consistent with the reported structures of the normal abasic site in a similar sequence context [Hoehn, S. T., Turner, C. J., and Stubbe, J. (2001) Nucleic Acids Res. 29, 3413-3423]. Molecular dynamics simulations reveal that the normal abasic site appears to be conformationally more flexible than the 4'-oxidized abasic site. The importance of the structure and flexibility of the abasic site in the recognition by the DNA repair enzyme Ape1 is discussed.  相似文献   

20.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7445-7456
We report below on features of the three-dimensional structure of the d(C-G-T-G-A-A-T-T-C-G-C-G) self-complementary duplex (designated 12-mer GT) containing symmetrical G X T mismatches in the interior of the helix. The majority of the base and sugar protons in the 12-mer GT duplex were assigned by two-dimensional nuclear Overhauser effect (NOESY) spectra in H2O and D2O solution. A set of 92 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds for one symmetrical half of the 12-mer GT duplex were estimated from NOESY data sets recorded as a function of mixing time. These experimental distances combined with nucleotide bond length parameters were embedded into Cartesian space; several trial structures were refined to minimize bond geometry and van der Waals and chirality error. Confidence in this approach is based on the similarity of the refined structures for the solution conformation of the 12-mer GT duplex. The G and T bases pair through two imino-carbonyl hydrogen bonds, and stacking is maintained between the G X T wobble pair and adjacent Watson-Crick G X C pairs. The experimental distance information is restricted to base and sugar protons, and hence structural features such as base pair overlap, glycosidic torsion angles, and sugar pucker are well-defined by this combination of NMR and distance geometry methods. By contrast, we are unable to define the torsion angles about the bonds C3'-O3'-P-O5'-C5'-C4' in the backbone of the nucleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号