首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila Glued gene product shares sequence homology with the p150 component of vertebrate dynactin. Dynactin is a multiprotein complex that stimulates cytoplasmic dynein-mediated vesicle motility in vitro. In this report, we present biochemical, cytological, and genetic evidence that demonstrates a functional similarity between the Drosophila Glued complex and vertebrate dynactin. We show that, similar to the vertebrate homologues in dynactin, the Glued polypeptides are components of a 20S complex. Our biochemical studies further reveal differential expression of the Glued polypeptides, all of which copurify as microtubule-associated proteins. In our analysis of the Glued polypeptides encoded by the dominant mutation, Glued, we identify a truncated polypeptide that fails to assemble into the wild-type 20S complex, but retains the ability to copurify with microtubules. The spatial and temporal distribution of the Glued complex during oogenesis is shown by immunocytochemistry methods to be identical to the pattern previously described for cytoplasmic dynein. Significantly, the pattern of Glued distribution in oogenesis is dependent on dynein function, as well as several other gene products known to be required for proper dynein localization. In genetic complementation studies, we find that certain mutations in the cytoplasmic dynein heavy chain gene Dhc64C act as dominant suppressors or enhancers of the rough eye phenotype of the dominant Glued mutation. Furthermore, we show that a mutation that was previously isolated as a suppressor of the Glued mutation is an allele of Dhc64C. Together with the observed dependency of Glued localization on dynein function, these genetic interactions demonstrate a functional association between the Drosophila dynein motor and Glued complexes.  相似文献   

2.
NuMA is a large nuclear protein whose relocation to the spindle poles is required for bipolar mitotic spindle assembly. We show here that this process depends on directed NuMA transport toward microtubule minus ends powered by cytoplasmic dynein and its activator dynactin. Upon nuclear envelope breakdown, large cytoplasmic aggregates of green fluorescent protein (GFP)-tagged NuMA stream poleward along spindle fibers in association with the actin-related protein 1 (Arp1) protein of the dynactin complex and cytoplasmic dynein. Immunoprecipitations and gel filtration demonstrate the assembly of a reversible, mitosis-specific complex of NuMA with dynein and dynactin. NuMA transport is required for spindle pole assembly and maintenance, since disruption of the dynactin complex (by increasing the amount of the dynamitin subunit) or dynein function (with an antibody) strongly inhibits NuMA translocation and accumulation and disrupts spindle pole assembly.  相似文献   

3.
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.  相似文献   

4.
Dynactin, a multisubunit complex that binds to the microtubule motor cytoplasmic dynein, may provide a link between dynein and its cargo. Many subunits of dynactin have been characterized, elucidating the multifunctional nature of this complex. Using a dynein affinity column, p22, the smallest dynactin subunit, was isolated and microsequenced. The peptide sequences were used to clone a full-length human cDNA. Database searches with the predicted amino acid sequence of p22 indicate that this polypeptide is novel. We have characterized p22 as an integral component of dynactin by biochemical and immunocytochemical methods. Affinity chromatography experiments indicate that p22 binds directly to the p150Glued subunit of dynactin. Immunocytochemistry with antibodies to p22 demonstrates that this polypeptide localizes to punctate cytoplasmic structures and to the centrosome during interphase, and to kinetochores and to spindle poles throughout mitosis. Antibodies to p22, as well as to other dynactin subunits, also revealed a novel localization for dynactin to the cleavage furrow and to the midbodies of dividing cells; cytoplasmic dynein was also localized to these structures. We therefore propose that dynein/dynactin complexes may have a novel function during cytokinesis.  相似文献   

5.
Amaro IA  Costanzo M  Boone C  Huffaker TC 《Genetics》2008,178(2):703-709
Stu1 is the Saccharomyces cerevisiae member of the CLASP family of microtubule plus-end tracking proteins and is essential for spindle formation. A genomewide screen for gene deletions that are lethal in combination with the temperature-sensitive stu1-5 allele identified ldb18Delta. ldb18Delta cells exhibit defects in spindle orientation similar to those caused by a block in the dynein pathway. Consistent with this observation, ldb18Delta is synthetic lethal with mutations affecting the Kar9 spindle orientation pathway, but not with those affecting the dynein pathway. We show that Ldb18 is a component of dynactin, a complex required for dynein activity in yeast and mammalian cells. Ldb18 shares modest sequence and structural homology with the mammalian dynactin component p24. It interacts with dynactin proteins in two-hybrid and co-immunoprecipitation assays, and comigrates with them as a 20 S complex during sucrose gradient sedimentation. In ldb18Delta cells, the interaction between Nip100 (p150(Glued)) and Jnm1 (dynamitin) is disrupted, while the interaction between Jnm1 and Arp1 is not affected. These results indicate that p24 is required for attachment of the p150(Glued) arm to dynamitin and the remainder of the dynactin complex. The genetic interaction of ldb18Delta with stu1-5 also supports the notion that dynein/dynactin helps to generate a spindle pole separating force.  相似文献   

6.
P150Glued is the largest subunit of dynactin, which binds to cytoplasmic dynein and activates vesicle transport along microtubules. We have isolated human cDNAs encoding p150Glued as well as a 135-kDa isoform; these isoforms are expressed in human brain by alternative mRNA splicing of the human DCTN1 gene. The p135 isoform lacks the consensus microtubule-binding motif shared by members of the p150Glued/Glued/CLIP-170/BIK1 family of microtubule-associated proteins and, therefore, is predicted not to bind directly to microtubules. We used transient transfection assays and in vitro microtubule-binding assays to demonstrate that the p150 isoform binds to microtubules, but the p135 isoform does not. However, both isoforms bind to cytoplasmic dynein, and both partition similarly into cytosolic and membrane cellular fractions. Sequential immunoprecipitations with an isoform-specific antibody for p150 followed by a pan-isoform antibody revealed that, in brain, these polypeptides assemble to form distinct complexes, each of which sediments at approximately 20 S. On the basis of these observations, we hypothesize that there is a conserved neuronal function for a distinct form of the dynactin complex that cannot bind directly to cellular microtubules.  相似文献   

7.
Dynactin is a multisubunit complex and a required cofactor for most, or all, of the cellular processes powered by the microtubule-based motor cytoplasmic dynein. Using a dynein affinity column, the previously uncharacterized p62 subunit of dynactin was isolated and microsequenced. Two peptide sequences were used to clone human cDNAs encoding p62. Sequence analysis of the predicted human polypeptide of 53 kDa revealed a highly conserved pattern of eleven cysteine residues, eight of which fit the consensus sequence for a Zn(2+)-binding RING domain. We have characterized p62 as an integral component of 20 S dynactin by biochemical and immunocytochemical methods. Affinity chromatography experiments demonstrate that p62 binds directly to the Arp1 subunit of dynactin. Immunocytochemistry with antibodies to p62 demonstrates that this polypeptide has a punctate cytoplasmic distribution as well as centrosomal distribution typical of dynactin. In transfected cells, overexpression of p62 did not disrupt microtubule organization or the integrity of the Golgi but did cause both cytosolic and nuclear distribution of the protein, suggesting that this polypeptide may be targeted to the nucleus at very high expression levels.  相似文献   

8.
9.
The critical role of microtubules in vectorial delivery of post-Golgi carrier vesicles to the apical cell surface has been established for various polarized epithelial cell types. In the present study we used secretory granules of the rat and chicken pancreas, termed zymogen granules, as model system for apically bound post-Golgi carrier vesicles that underlie the regulated exocytotic pathway. We found that targeting of zymogen granules to the apical cell surface requires an intact microtubule system which contains its colchicine-resistant organizing center and, thus, the microtubular minus ends close to the apical membrane domain. Purified zymogen granules and their membranes were found to be associated with cytoplasmic dynein intermediate and heavy chain and to contain the major components of the dynein activator complex, dynactin, i.e. p150Glued, p62, p50, Arp1, and beta-actin. Kinesin heavy chain and the kinesin receptor, 160 kD kinectin, were not detected as components of zymogen granules. Immunofluorescence staining showed a zymogen granule-like distribution for dynein and dynactin (p150Glued, p62, p50, Arpl) in the apical cytoplasm, whereas kinesin and kinectin were largely concentrated in the basal half of the cells in a pattern similar to the distribution of calreticulin, a component of the endoplasmic reticulum. Secretory granules of non-polarized chromaffin cells of the bovine adrenal medulla, that are assumed to underlie microtubular plus end targeting from the Golgi apparatus to the cell periphery, were not found to be associated with dynein or dynactin. To our knowledge, this is the first demonstration of major components of the dynein-dynactin complex associated with the membrane of a biochemically and functionally well-defined organelle which is considered to underlie a vectorial minus end-driven microtubular transport critically involved in precise delivery of digestive enzymes to the apically located acinar lumen.  相似文献   

10.
Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein (Mallik and Gross, 2004). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments (Karki and Holzbaur, 1999). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis (Puls et al., 2003). Thus, it is essential to understand the in vivo function of dynactin. To test directly and rigorously the hypothesis that dynactin is required to attach dynein to membranes, we used both a Drosophila mutant and RNA interference to generate organisms and cells lacking the critical dynactin subunit, actin-related protein 1. Contrary to expectation, we found that apparently normal amounts of dynein associate with membrane compartments in the absence of a fully assembled dynactin complex. In addition, anterograde and retrograde organelle movement in dynactin deficient axons was completely disrupted, resulting in substantial changes in vesicle kinematic properties. Although effects on retrograde transport are predicted by the proposed function of dynactin as a regulator of dynein processivity, the additional effects we observed on anterograde transport also suggest potential roles for dynactin in mediating kinesin-driven transport and in coordinating the activity of opposing motors (King and Schroer, 2000).  相似文献   

11.
12.
Dynein is a minus-end–directed microtubule motor important for mitotic spindle positioning. In budding yeast, dynein activity is restricted to anaphase when the nucleus enters the bud neck, yet the nature of the underlying regulatory mechanism is not known. Here, the microtubule-associated protein She1p is identified as a novel regulator of dynein activity. In she1Δ cells, dynein is activated throughout the cell cycle, resulting in aberrant spindle movements that misposition the spindle. We also found that dynactin, a cofactor essential for dynein motor function, is a dynamic complex whose recruitment to astral microtubules (aMTs) increases dramatically during anaphase. Interestingly, loss of She1p eliminates the cell-cycle regulation of dynactin recruitment and permits enhanced dynactin accumulation on aMTs throughout the cell cycle. Furthermore, localization of the dynactin complex to aMTs requires dynein, suggesting that dynactin is recruited to aMTs via interaction with dynein and not the microtubule itself. Lastly, we present evidence supporting the existence of an incomplete dynactin subcomplex localized at the SPB, and a complete complex that is loaded onto aMTs from the cytoplasm. We propose that She1p restricts dynein-dependent spindle positioning to anaphase by inhibiting the association of dynein with the complete dynactin complex.  相似文献   

13.
Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.  相似文献   

14.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

15.
Although vertebrate cytoplasmic dynein can move to the minus ends of microtubules in vitro, its ability to translocate purified vesicles on microtubules depends on the presence of an accessory complex known as dynactin. We have cloned and characterized a novel gene, NIP100, which encodes the yeast homologue of the vertebrate dynactin complex protein p150glued. Like strains lacking the cytoplasmic dynein heavy chain Dyn1p or the centractin homologue Act5p, nip100Δ strains are viable but undergo a significant number of failed mitoses in which the mitotic spindle does not properly partition into the daughter cell. Analysis of spindle dynamics by time-lapse digital microscopy indicates that the precise role of Nip100p during anaphase is to promote the translocation of the partially elongated mitotic spindle through the bud neck. Consistent with the presence of a true dynactin complex in yeast, Nip100p exists in a stable complex with Act5p as well as Jnm1p, another protein required for proper spindle partitioning during anaphase. Moreover, genetic depletion experiments indicate that the binding of Nip100p to Act5p is dependent on the presence of Jnm1p. Finally, we find that a fusion of Nip100p to the green fluorescent protein localizes to the spindle poles throughout the cell cycle. Taken together, these results suggest that the yeast dynactin complex and cytoplasmic dynein together define a physiological pathway that is responsible for spindle translocation late in anaphase.  相似文献   

16.
Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.  相似文献   

17.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

18.
The small GTPase Rab7 controls late endocytic transport by the minus end-directed motor protein complex dynein-dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP-Rab7-ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150(Glued), which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150(Glued) recruitment by Rab7-RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as betaIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150(Glued) dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7-RILP is transferred by ORP1L to betaIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with betaIII spectrin, which requires the activities of Rab7-RILP and ORP1L.  相似文献   

19.
Cytoplasmic dynein is the major minus end-directed microtubule motor in animal cells, and associates with many of its cargoes in conjunction with the dynactin complex. Interaction between cytoplasmic dynein and dynactin is mediated by the binding of cytoplasmic dynein intermediate chains (CD-IC) to the dynactin subunit, p150(Glued). We have found that both CD-IC and p150(Glued) are cleaved by caspases during apoptosis in cultured mammalian cells and in Xenopus egg extracts. Xenopus CD-IC is rapidly cleaved at a conserved aspartic acid residue adjacent to its NH(2)-terminal p150(Glued) binding domain, resulting in loss of the otherwise intact cytoplasmic dynein complex from membranes. Cleavage of CD-IC and p150(Glued) in apoptotic Xenopus egg extracts causes the cessation of cytoplasmic dynein--driven endoplasmic reticulum movement. Motility of apoptotic membranes is restored by recruitment of intact cytoplasmic dynein and dynactin from control cytosol, or from apoptotic cytosol supplemented with purified cytoplasmic dynein--dynactin, demonstrating the dynamic nature of the association of cytoplasmic dynein and dynactin with their membrane cargo.  相似文献   

20.
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号