首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation.  相似文献   

2.
Cell division in the fission yeast Schizosaccharomyces pombe requires the formation and constriction of an actomyosin ring at the division site. The actomyosin ring is assembled in metaphase and anaphase A, is maintained throughout mitosis, and constricts after completion of anaphase. Maintenance of the actomyosin ring during late stages of mitosis depends on the septation initiation network (SIN), a signaling cascade that also regulates the deposition of the division septum. However, SIN is not active in metaphase and is not required for the initial assembly of the actomyosin ring early in mitosis. The FER/CIP4-homology (FCH) domain protein Cdc15p is a component of the actomyosin ring. Mutations in cdc15 lead to failure in cytokinesis and result in the formation of elongated, multinucleate cells without a division septum. Here we present evidence that the requirement of Cdc15p for actomyosin ring formation is dependent on the stage of mitosis. Although cdc15 mutants are competent to assemble actomyosin rings in metaphase, they are unable to maintain actomyosin rings late in mitosis when SIN is active. In the absence of functional Cdc15p, ring formation upon metaphase arrest depends on the anillin-like Mid1p. Interestingly, when cytokinesis is delayed due to perturbations to the division machinery, Cdc15p is maintained in a hypophosphorylated form. The dephosphorylation of Cdc15p, which occurs transiently in unperturbed cytokinesis, is partially dependent on the phosphatase Clp1p/Flp1p. This suggests a mechanism where both SIN and Clp1p/Flp1p contribute to maintenance of the actomyosin ring in late mitosis through Cdc15p, possibly by regulating its phosphorylation status.  相似文献   

3.
In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle.  相似文献   

5.
The fission yeast Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin contractile ring. Precisely at the end of anaphase, the ring begins to constrict and the septum forms. Proper coordination of cell division with mitosis is crucial to ensure proper segregation of chromosomes to daughter cells. The Sid2p kinase is one of several proteins that function as part of a novel signaling pathway required for initiation of medial ring constriction and septation. Here, we show that Sid2p is a component of the spindle pole body at all stages of the cell cycle and localizes transiently to the cell division site during medial ring constriction and septation. A medial ring and an intact microtubule cytoskeleton are required for the localization of Sid2p to the division site. We have established an in vitro assay for measuring Sid2p kinase activity, and found that Sid2p kinase activity peaks during medial ring constriction and septation. Both Sid2p localization to the division site and activity depend on the function of all of the other septation initiation genes: cdc7, cdc11, cdc14, sid1, spg1, and sid4. Thus, Sid2p, a component of the spindle pole body, by virtue of its transient localization to the division site, appears to determine the timing of ring constriction and septum delivery in response to activating signals from other Sid gene products.  相似文献   

6.
7.
The onset of septum formation in the fission yeast Schizosaccharomyces pombe is signaled via the spglp GTPase-switch, which is part of the septation initiation network. This is negatively regulated by the two-component GTPase-activating protein (GAP) comprised of the products of the cdc16 and byr4 genes. Loss-of-function mutations in either of these genes result in multiple rounds of septum formation without cell cleavage. In this work, we demonstrate that attenuation of the protein kinase cdc7p can rescue the lethality of a null allele of cdc16. This observation provides the basis for selection of chromosomal mutations and multicopy suppressors that attenuate the signaling of septation. Using this screen, mutations in all the previously described septation initiation network genes were obtained, with the exception of byr4, sid4 and plo1. We also demonstrate that increased expression of the dma1 gene can rescue the lethality of a null allele of cdc16. The implications for the regulation of septum formation in fission yeast are discussed.  相似文献   

8.
《The Journal of cell biology》1996,133(6):1307-1319
A novel gene, designated byr4, was identified in Schizosaccharomyces pombe that affects the mitotic cell cycle and shows genetic interactions with the ras1 signaling pathways. Null alleles of byr4 cause cell cycle arrest in late mitosis and permit multiple rounds of septation. The multiple septa typically divide two nuclei, but the nuclei frequently do not stain equally with 4',6-diamidino-2- phenylindole (DAPI), suggesting that byr4 is required for proper karyokinesis. Overexpression of byr4 inhibits cytokinesis, but cell cycle progression continues leading to multinucleate cells. When byr4 is overexpressed, the early steps in the cytokinesis pathway, including formation of the medial F-actin ring, occur normally; however, the later steps in the pathway, including contraction of the F-actin ring, septation, and rearrangement of the medial F-actin following mitosis, rarely occur, byr4 shows two genetic interactions with ras1. The inhibition of cytokinesis by byr4 overexpression was exacerbated by null alleles of ras1 and scd1, suggesting a link between pathways needed for cell polarity and cytokinesis. Overexpression of byr4 also partially bypasses the need for ras1 for sporulation. The electrophoretic mobility of the byr4 protein varied in response to mutants that perturb cytokinesis and karyokinesis, suggesting interactions between byr4 and these gene products. A more rapidly migrating byr4 protein was found in cells with mutations in cdc16, which undergo repeated septation, and in cdc15, which fail to form a medial F-actin ring in mitosis. A slower migrating byr4 protein was found in cells with a mutation in the beta-tubulin gene, which arrests cells at the metaphase-anaphase transition.  相似文献   

9.
BACKGROUND: The signal for the onset of septum formation in the fission yeast Schizosaccharomyces pombe is transduced by the septation initiation network (SIN). Many of the components of the SIN are located on the spindle pole body during mitosis, from where it is presumed that the signal for septum formation is delivered. Cdc11 mutants are defective in SIN signaling, but the role of cdc11 in the pathway has remained enigmatic. RESULTS: We have cloned the cdc11 gene by a combination of chromosome walking and transfection of cosmids into a cdc11 mutant. Cdc11p most closely resembles Saccharomyces cerevisiae Nud1p and is essential for septum formation. Cdc11p is a phosphoprotein, which becomes hyperphosphorylated during anaphase. It localizes to the spindle pole body at all stages of the cell cycle, in a sid4p-dependent manner, and cdc11p is required for the localization of all the known SIN components, except sid4p, to the SPB. Cdc11p and sid4p can be coimmunoprecipitated from cell extracts. Finally, like its S. cerevisiae ortholog Nud1p, cdc11p is involved in the proper organization of astral microtubules during mitosis. CONCLUSIONS: We propose that cdc11p acts as a bridge between sid4p and the other SIN proteins, mediating their association with the spindle pole body.  相似文献   

10.
A conditional heat-sensitive mutation in the cdc14 gene of the fission yeast Schizosaccharomyces pombe results in failure to form a septum. Cells become highly elongated and multinucleate as growth and nuclear division continue in the absence of cell division. This article describes the cloning of the cdc14 gene and the identification of its product, a protein of 240 amino acids, p28cdc14. A null allele of the cdc14 gene shows that the gene is essential for septum formation and completion of the cell-division cycle. Overexpression of the gene product, p28cdc14, causes cell-cycle arrest in late G2 before mitosis. Cells leaking past the block activate p34cdc2 kinase and show condensed chromosomes, but the normal rearrangements of the microtubules and microfilaments that are associated with the transition from interphase to mitosis do not occur. Overexpression of p28cdc14 in mutants, in which the timing of mitosis is altered, suggests that these effects may be mediated upstream of the mitotic inhibitor wee1. These data are consistent with the idea that p28cdc14 may play a role in both the initiation of mitosis and septum formation and, by doing so, be part of the mechanism that coordinates these two cell-cycle events.  相似文献   

11.
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a syntheticlethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.  相似文献   

12.
13.
In the fission yeast Schizosaccharomyces pombe, the cdc11 gene is required for the initiation of septum formation at the end of mitosis. The sce3 gene was cloned as a multi-copy suppressor of the heat-sensitive mutant cdc11-136. When over-expressed, it rescues all mutants of cdc11 and also a heat-sensitive allele of cdc14, but not the cdc14 null mutant. Deletion shows that sce3 is not essential for cell proliferation. It encodes a putative RNA-binding protein which shows homology to human eIF4B. Immunolocalisation indicates that Sce3p is located predominantly in the cytoplasm. Elevated expression of sce3 increases the steady-state level of cdc14 mRNA. Possible mechanisms of its action are discussed.  相似文献   

14.
In fungal cells cytokinesis requires coordinated closure of a contractile actomyosin ring (CAR) and synthesis of a special cell wall structure known as the division septum. Many CAR proteins have been identified and characterized, but how these molecules interact with the septum synthesis enzymes to form the septum remains unclear. Our genetic study using fission yeast shows that cooperation between the paxillin homolog Pxl1, required for ring integrity, and Bgs1, the enzyme responsible for linear β(1,3)glucan synthesis and primary septum formation, is required for stable anchorage of the CAR to the plasma membrane before septation onset, and for cleavage furrow formation. Thus, lack of Pxl1 in combination with Bgs1 depletion, causes failure of ring contraction and lateral cell wall overgrowth towards the cell lumen without septum formation. We also describe here that Pxl1 concentration at the CAR increases during cytokinesis and that this increase depends on the SH3 domain of the F-BAR protein Cdc15. In consequence, Bgs1 depletion in cells carrying a cdc15ΔSH3 allele causes ring disassembly and septation blockage, as it does in cells lacking Pxl1. On the other hand, the absence of Pxl1 is lethal when Cdc15 function is affected, generating a large sliding of the CAR with deposition of septum wall material along the cell cortex, and suggesting additional functions for both Pxl1 and Cdc15 proteins. In conclusion, our findings indicate that CAR anchorage to the plasma membrane through Cdc15 and Pxl1, and concomitant Bgs1 activity, are necessary for CAR maintenance and septum formation in fission yeast.  相似文献   

15.
Schizosaccharomyces pombe is an excellent organism in which to study cytokinesis as it divides by medial fission using an F-actin contractile ring. To enhance our understanding of the cell division process, a large genetic screen was carried out in which 17 genetic loci essential for cytokinesis were identified, 5 of which are novel. Mutants identifying three genes, rng3(+), rng4(+), and rng5(+), were defective in organizing an actin contractile ring. Four mutants defective in septum deposition, septum initiation defective (sid)1, sid2, sid3, and sid4, were also identified and characterized. Genetic analyses revealed that the sid mutants display strong negative interactions with the previously described septation mutants cdc7-24, cdc11-123, and cdc14-118. The rng5(+), sid2(+), and sid3(+) genes were cloned and shown to encode Myo2p (a myosin heavy chain), a protein kinase related to budding yeast Dbf2p, and Spg1p, a GTP binding protein that is a member of the ras superfamily of GTPases, respectively. The ability of Spg1p to promote septum formation from any point in the cell cycle depends on the activity of Sid4p. In addition, we have characterized a phenotype that has not been described previously in cytokinesis mutants, namely the failure to reorganize actin patches to the medial region of the cell in preparation for septum formation.  相似文献   

16.
BACKGROUND INFORMATION: In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast, ring constriction is followed by deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomyosin ring and septum assembly, little is known about the later steps involving the cleavage of the cell wall. RESULTS: We identified a novel gene in Schizosaccharomyces pombe, namely the agn1(+) gene that has homology to fungal 1,3-alpha-glucanases (mutanases). Disruption of the agn1(+) gene is not lethal to the cells, but does interfere with their separation, whereas overexpression of Agn1p is toxic and causes cell lysis. Agn1p levels reach a peak during septation and the protein localizes to the septum region before cell separation. Moreover, agn1(+) is responsible for the 1,3-alpha-glucanase activity, which shows a maximum at the end of septation. CONCLUSIONS: Our results clearly suggest the existence of a relationship between agn1(+), 1,3-alpha-glucanase activity and the completion of septation in S. pombe. Agn1p could be involved in the cleavage of the cylinder of the old wall that surrounds the primary septum, a region rich in alpha-glucans.  相似文献   

17.
A panel screening using cdc mutants of Schizosaccharomyces pombe identified radicicol as a potent growth inhibitor of certain mutants at the permissive temperature. The strains sensitive to radicicol were cdc7, cdc11, and cdc14, all of which are defective in early septum formation. Cytokinesis but not nuclear division of these mutants was inhibited by radicicol, but that of cells with the wild-type background was not. A biologically active derivative of radicicol with a biotin moiety at the C-11 position bound Swo1, an Hsp90 homologue in S. pombe. Increased Swo1 expression partially suppressed radicicol sensitivity of cdc14 and almost completely rescued morphological abnormalities in cdc14 and cdc7 cells induced by radicicol at the permissive temperature. On the other hand, the increased Swo1 expression did not restore septum formation at the nonpermissive temperature. These results suggest that Swo1, as a molecular chaperone, plays a role in stabilizing these temperature-sensitive proteins at the permissive temperature or in activating the cytokinesis signaling cascade.  相似文献   

18.
In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast cells, ring constriction is triggered by the septum initiation network (SIN), an SPB-associated GTPase-regulated kinase cascade that coordinates exit from mitosis with cytokinesis. We have identified a novel protein, Etd1p, required to trigger actomyosin ring constriction in fission yeasts. This protein is localised at the cell tips during interphase. In mitosis, it relocates to the medial cortex region and, coincident with cytokinesis, it assembles into the actomyosin ring by association to Cdc15p. Relocation of Etd1p from the plasma membrane to the medial ring is triggered by SIN signalling and, reciprocally, relocation of the Sid2p-Mob1p kinase complex from the SPB to the division site, a late step in the execution of the SIN, requires Etd1p. These results suggest that Etd1p coordinates the mitotic activation of SIN with the initiation of actomyosin ring constriction. Etd1p peaks during cytokinesis and is degraded by the ubiquitin-dependent 26S-proteasome pathway at the end of septation, providing a mechanism to couple inactivation of SIN to completion of cytokinesis.  相似文献   

19.
Many membrane processes occur in discrete membrane domains containing lipid rafts, but little is known about how these domains are organized and positioned. In the fission yeast Schizosaccharomyces pombe, a sterol-rich membrane domain forms at the cell-division site. Here, we show that formation of this membrane domain is independent of the contractile actin ring, septation, mid1p and the septins, and also requires cdc15p, an essential contractile ring protein that associates with lipid rafts. cdc15 mutants have membrane domains in the shape of spirals. Overexpression of cdc15p in interphase cells induces abnormal membrane domain formation in an actin-independent manner. We propose that cdc15p functions to organize lipid rafts at the cleavage site for cytokinesis.  相似文献   

20.
Coordination of mitosis and cytokinesis is crucial for ensuring proper chromosome segregation and genomic stability. In Schizosaccharomyces pombe, the sid genes (cdc7, cdc11, cdc14, spg1, sid1, sid2 and sid4) define a signaling pathway that regulates septation and cytokinesis. Here we describe the characterization of a novel protein kinase, Sid1p. Sid1p localizes asymmetrically to one spindle pole body (SPB) in anaphase. Sid1p localization is maintained during medial ring constriction and septum synthesis and disappears prior to cell separation. Additionally, we found that Cdc14p is in a complex with Sid1p. Epistasis analysis places Sid1p-Cdc14p downstream of Spg1p-Cdc7p but upstream of Sid2p. Finally, we show that cyclin proteolysis during mitosis is unaffected by inactivating the sid pathway; in fact, loss of Cdc2-cyclin activity promotes Sid1p-Cdc14p association with the SPB, possibly providing a mechanism that couples cytokinesis with mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号