首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We developed a method called residue contact frequency (RCF), which uses the complex structures generated by the protein–protein docking algorithm ZDOCK to predict interface residues. Unlike interface prediction algorithms that are based on monomers alone, RCF is binding partner specific. We evaluated the performance of RCF using the area under the precision‐recall (PR) curve (AUC) on a large protein docking Benchmark. RCF (AUC = 0.44) performed as well as meta‐PPISP (AUC = 0.43), which is one of the best monomer‐based interface prediction methods. In addition, we test a support vector machine (SVM) to combine RCF with meta‐PPISP and another monomer‐based interface prediction algorithm Evolutionary Trace to further improve the performance. We found that the SVM that combined RCF and meta‐PPISP achieved the best performance (AUC = 0.47). We used RCF to predict the binding interfaces of proteins that can bind to multiple partners and RCF was able to correctly predict interface residues that are unique for the respective binding partners. Furthermore, we found that residues that contributed greatly to binding affinity (hotspot residues) had significantly higher RCF than other residues. Proteins 2014; 82:57–66. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
In this paper(1) we present a novel framework for protein secondary structure prediction. In this prediction framework, firstly we propose a novel parameterized semi-probability profile, which combines single sequence with evolutionary information effectively. Secondly, different semi-probability profiles are respectively applied as network input to predict protein secondary structure. Then a comparison among these different predictions is discussed in this article. Finally, na?ve Bayes approaches are used to combine these predictions in order to obtain a better prediction performance than individual prediction. The experimental results show that our proposed framework can indeed improve the prediction accuracy.  相似文献   

4.

Background  

Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins.  相似文献   

5.
SUMMARY: AiO (All in One) is a program for Windows, that combines typical DNA/protein features such as plasmid map drawing, finding of ORFs, translate, backtranslate and high quality printing with a number of databases. These databases allow the management of oligonucleotides, oligonucleotide-manufacturers, restriction enzymes, structural DNA and program users in a multi-user/multi-group environment. AVAILABILITY: An AiO specific website, with the possibility to download is at: http://134.99.88.55/aio/ SUPPLEMENTARY INFORMATION: Examples with screen shots- http://134.99.88.55/aio/ : Manual (in PDF format)-http://134.99.88.55/aio/manual.pdf  相似文献   

6.
Hybrid system for protein secondary structure prediction.   总被引:13,自引:0,他引:13  
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts.  相似文献   

7.
The growing body of experimental and computational data describing how proteins interact with each other has emphasized the multiplicity of protein interactions and the complexity underlying protein surface usage and deformability. In this work, we propose new concepts and methods toward deciphering such complexity. We introduce the notion of interacting region to account for the multiple usage of a protein's surface residues by several partners and for the variability of protein interfaces coming from molecular flexibility. We predict interacting patches by crossing evolutionary, physicochemical and geometrical properties of the protein surface with information coming from complete cross-docking (CC-D) simulations. We show that our predictions match well interacting regions and that the different sources of information are complementary. We further propose an indicator of whether a protein has a few or many partners. Our prediction strategies are implemented in the dynJET2 algorithm and assessed on a new dataset of 262 protein on which we performed CC-D. The code and the data are available at: http://www.lcqb.upmc.fr/dynJET2/ .  相似文献   

8.
Matsuo K  Watanabe H  Gekko K 《Proteins》2008,73(1):104-112
Synchrotron-radiation vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy can significantly improve the predictive accuracy of the contents and segment numbers of protein secondary structures by extending the short-wavelength limit of the spectra. In the present study, we combined VUVCD spectra down to 160 nm with neural-network (NN) method to improve the sequence-based prediction of protein secondary structures. The secondary structures of 30 target proteins (test set) were assigned into alpha-helices, beta-strands, and others by the DSSP program based on their X-ray crystal structures. Combining the alpha-helix and beta-strand contents estimated from the VUVCD spectra of the target proteins improved the overall sequence-based predictive accuracy Q(3) for three secondary-structure components from 59.5 to 60.7%. Incorporating the position-specific scoring matrix in the NN method improved the predictive accuracy from 70.9 to 72.1% when combining the secondary-structure contents, to 72.5% when combining the numbers of segments, and finally to 74.9% when filtering the VUVCD data. Improvement in the sequence-based prediction of secondary structures was also apparent in two other indices of the overall performance: the correlation coefficient (C) and the segment overlap value (SOV). These results suggest that VUVCD data could enhance the predictive accuracy to over 80% when combined with the currently best sequence-prediction algorithms, greatly expanding the applicability of VUVCD spectroscopy to protein structural biology.  相似文献   

9.
10.
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF.  相似文献   

11.
Toxoplasma gondii is an apicomplexan parasite that secretes a large number of protein kinases and pseudokinases from its rhoptry organelles. Although some rhoptry kinases (ROPKs) act as virulence factors, many remain uncharacterized. In this study, predicted ROPKs were assessed for bradyzoite expression then prioritized for a reverse genetic analysis in the type II strain Pru that is amenable to targeted disruption. Using CRISPR/Cas9, we engineered C‐terminally epitope tagged ROP21 and ROP27 and demonstrated their localization to the parasitophorous vacuole and cyst matrix. ROP21 and ROP27 were not secreted from microneme, rhoptry, or dense granule organelles, but rather were located in small vesicles consistent with a constitutive pathway. Using CRISPR/Cas9, the genes for ROP21, ROP27, ROP28, and ROP30 were deleted individually and in combination, and the mutant parasites were assessed for growth and their ability to form tissue cysts in mice. All knockouts lines were normal for in vitro growth and bradyzoite differentiation, but a combined ?rop21/?rop17 knockout led to a 50% reduction in cyst burden in vivo. Our findings question the existing annotation of ROPKs based solely on bioinformatic techniques and yet highlight the importance of secreted kinases in determining the severity of chronic toxoplasmosis.  相似文献   

12.
13.

Background  

It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required.  相似文献   

14.
15.
The new predictor of disordered protein regions (disEMBL) introduced in this issue of Structure represents a computational tool developed to aid structural biologists in the design of protein constructs that avoid disordered protein regions in order to increase the success rate of structure determination.  相似文献   

16.
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.  相似文献   

17.
Nair R  Rost B 《Proteins》2003,53(4):917-930
The native sub-cellular compartment of a protein is one aspect of its function. Thus, predicting localization is an important step toward predicting function. Short zip code-like sequence fragments regulate some of the shuttling between compartments. Cataloguing and predicting such motifs is the most accurate means of determining localization in silico. However, only few motifs are currently known, and not all the trafficking appears regulated in this way. The amino acid composition of a protein correlates with its localization. All general prediction methods employed this observation. Here, we explored the evolutionary information contained in multiple alignments and aspects of protein structure to predict localization in absence of homology and targeting motifs. Our final system combined statistical rules and a variety of neural networks to achieve an overall four-state accuracy above 65%, a significant improvement over systems using only composition. The system was at its best for extra-cellular and nuclear proteins; it was significantly less accurate than TargetP for mitochondrial proteins. Interestingly, all methods that were developed on SWISS-PROT sequences failed grossly when fed with sequences from proteins of known structures taken from PDB. We therefore developed two separate systems: one for proteins of known structure and one for proteins of unknown structure. Finally, we applied the PDB-based system along with homology-based inferences and automatic text analysis to annotate all eukaryotic proteins in the PDB (http://cubic.bioc.columbia.edu/db/LOC3D). We imagine that this pilot method-certainly in combination with similar tools-may be valuable target selection in structural genomics.  相似文献   

18.
Predicting the three-dimensional structure of proteins is a difficult task. In the last few years several approaches have been proposed for performing this task taking into account different protein chemical and physical properties. As a result, a growing number of protein structure prediction tools is becoming available, some of them specialized to work on either some aspects of the predictions or on some categories of proteins; however, they are still not sufficiently accurate and reliable for predicting all kinds of proteins. In this context, it is useful to jointly apply different prediction tools and combine their results in order to improve the quality of the predictions. However, several problems have to be solved in order to make this a viable possibility. In this paper a framework and a tool is proposed which allows: (i) definition of a common reference applicative domain for different prediction tools; (ii) characterization of prediction tools through evaluating some quality parameters; (iii) characterization of the performances of a team of predictors jointly applied over a prediction problem; (iv) the singling out of the best team for a prediction problem; and (v) the integration of predictor results in the team in order to obtain a unique prediction. A system implementing the various steps of the proposed framework (CooPPS) has been developed and several experiments for testing the effectiveness of the proposed approach have been carried out.  相似文献   

19.
Function prediction and protein networks   总被引:3,自引:0,他引:3  
In the genomics era, the interactions between proteins are at the center of attention. Genomic-context methods used to predict these interactions have been put on a quantitative basis, revealing that they are at least on an equal footing with genomics experimental data. A survey of experimentally confirmed predictions proves the applicability of these methods, and new concepts to predict protein interactions in eukaryotes have been described. Finally, the interaction networks that can be obtained by combining the predicted pair-wise interactions have enough internal structure to detect higher levels of organization, such as 'functional modules'.  相似文献   

20.
Membrane proteins are a major class of proteins and encoded by approximately 20% to 30% of genes in most organisms. In this work, a two-layer novel membrane protein prediction system, called Mem-PHybrid, is proposed. It is able to first identify the protein query as a membrane or nonmembrane protein. In the second level, it further identifies the type of membrane protein. The proposed Mem-PHybrid prediction system is based on hybrid features, whereby a fusion of both the physicochemical and split amino acid composition-based features is performed. This enables the proposed Mem-PHybrid to exploit the discrimination capabilities of both types of feature extraction strategy. In addition, minimum redundancy and maximum relevance has also been applied to reduce the dimensionality of a feature vector. We employ random forest, evidence-theoretic K-nearest neighbor, and support vector machine (SVM) as classifiers and analyze their performance on two datasets. SVM using hybrid features yields the highest accuracy of 89.6% and 97.3% on dataset1 and 91.5% and 95.5% on dataset2 for jackknife and independent dataset tests, respectively. The enhanced prediction performance of Mem-PHybrid is largely attributed to the exploitation of the discrimination power of the hybrid features and of the learning capability of SVM. Mem-PHybrid is accessible at http://www.111.68.99.218/Mem-PHybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号