首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is much uncertainty about cancer risks at the high radiation doses used in radiotherapy (RT). It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However, this is not seen in all RT groups, and a model recently developed by Sachs and Brenner [2005. Solid tumor risks after high doses of ionizing radiation. Proc. Natl Acad. Sci. USA 102, 13040-13045] proposed a mechanism for repopulation of cells after radiation exposure that explained why this might happen, at least for solid tumours. In this paper, this model is generalized to allow for heterogeneity in the dose received, and various alternate patterns of repopulation are also considered. The model is fitted to the Japanese atomic bomb survivor leukaemia incidence data, and data for various therapeutically irradiated groups. Two sets of parameters from these model fits are used to assess the sensitivity of model predictions. It is shown that in general allowing for heterogeneity in dose distribution and haematopoietic stem cell migration results in lower risks than the same average dose administered uniformly and without such migration, although this does not hold in the limiting case of complete stem cell repopulation between radiation dose fractions. We also investigate the difference made by assuming a compartmental repopulation signal, and a global repopulation signal. In general we show that in the absence of stochastic extinction, compartmental repopulation always predicts a larger number of mutated cells than global repopulation. However, in certain dose regimes stochastic extinction cannot be ignored, and in these cases the numbers of mutated cells predicted with global repopulation can exceed that for compartmental repopulation. In general, mutant cell numbers are highly overdispersed, with variance much greater than the mean.  相似文献   

3.
The free-living, but potentially pathogenic, bacteriovorous amoebae of the genus Acanthamoeba can be easily grown axenically in a laboratory culture. This, however, often leads to considerable losses in virulence, and encystment capacity, and to changes in drug susceptibility. We evaluated potential options for a reactivation of a number of physiological properties, attenuated by prolonged axenic laboratory culture, including encystment potential, protease activity, heat resistance, growth rates and drug susceptibility against N -chlorotaurine (NCT). Toward this end, a strain that had been grown axenically for 10 years was repeatedly passaged on human HEp-2 cell monolayers or treated with 5'-azacytidine (AzaC), a methyltransferase inhibitor, and trichostatin A (TSA), a histone deacetylase inhibitor, in order to uplift epigenetic gene regulation. Culture on human cell monolayers resulted in significantly enhanced encystment potentials and protease activities, and higher susceptibility against NCT, whereas the resistance against heat shock was not altered. Treatment with AzaC/TSA resulted in increased encystment rates and protease activities, indicating the participation of epigenetic mechanisms. However, lowered resistances against heat shock indicate that possible stress responses to AzaC/TSA have to be taken into account. Repeated growth on human cell monolayers appears to be a potential method to reactivate attenuated characteristics in Acanthamoeba .  相似文献   

4.
UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin.  相似文献   

5.
6.
The use of cytosine analogue--5-Azacytidine(5AzaC), derepression of ribosomal genes has been studied in one of organising chromosomes in the African green monkey RAMT cell line in which the nucleolar organizer region (NOR) in parental cells was active. The effect of 5AzaC on the functional state of NOR was assessed by the length of the secondary constriction in this chromosome and by the intensity of Ag-staining of NOR. 5AzaC was added to the cell culture at concentrations 2-16 M, either immediately after the cell passage or at the 24th h from the beginning of cell cultivation for the following 17-34 hours. As a control the cells cultivated in the absence of 5AzaC were used. Comparison of control cells with those treated with 5AzaC showed: 1) increase of the length of the second constriction in the chromosome with the initial inactive NOR in the 5AzaC--treated cells; 2) a marked increase of the intensity of NOR's Ag-staining in the same chromosome after incorporation of 5-AzaC into DNA. The conclusion about the methylation of cytosine bases in the DNA of ribosomal genes in one NOR organising chromosomes in RAMT cell line was made.  相似文献   

7.

Background  

5-AzaCytidine (AzaC) is a DNA demethylating drugs that has been shown to inhibit cell growth and to induce apoptosis in certain cancer cells. Induced expression of the galectin1 (Gal1) protein, a galactoside-binding protein distributed widely in immune cells, has been described in cultured hepatoma-derived cells treated with AzaC and this event may have a role in the effect of the drug. According to this hypothesis, we investigated the effect of AzaC and Gal1 on human lymphoid B cells phenotype.  相似文献   

8.
9.
10.
The structurally related MAPK‐activated protein kinases (MAPKAPKs or MKs) MK2, MK3 and MK5 are involved in multiple cellular functions, including cell‐cycle control and cellular differentiation. Here, we show that after deregulation of cell‐cycle progression, haematopoietic stem cells (HSCs) in MK2‐deficient mice are reduced in number and show an impaired ability for competitive repopulation in vivo. To understand the underlying molecular mechanism, we dissected the role of MK2 in association with the polycomb group complex (PcG) and generated a MK2 mutant, which is no longer able to bind to PcG. The reduced ability for repopulation is rescued by re‐introduction of MK2, but not by the Edr2‐non‐binding mutant of MK2. Thus, MK2 emerges as a regulator of HSC homeostasis, which could act through chromatin remodelling by the PcG complex.  相似文献   

11.

Objective

Chromatin texture patterns of tumour cell nuclei can serve as cancer biomarkers, either to define diagnostic classifications or to obtain relevant prognostic information, in a large number of human tumours. Epigenetic mechanisms, mainly DNA methylation and histone post‐translational modification, have been shown to influence chromatin packing states, and therefore nuclear texture. The aim of this study was to analyse effects of these two mechanisms on chromatin texture, and also on correlation with gelatinase expression, in human fibrosarcoma tumour cells.

Materials and methods

We investigated effects of DNA hypomethylating agent 5‐aza‐2′‐deoxycytidine (5‐azadC) and histone deacetylase inhibitor trichostatin A (TSA) on nuclear textural characteristics of human HT1080 fibrosarcoma cells, evaluated by image cytometry, and expression of gelatinases MMP‐2 and MMP‐9, two metalloproteinases implicated in cancer progression and metastasis.

Results

5‐azadC induced significant variation in chromatin higher order organization, particularly chromatin decondensation, associated with reduction in global DNA methylation, concomitantly with increase in MMP‐9, and to a lesser extent, MMP‐2 expression. TSA alone did not have any effect on HT1080 cells, but exhibited differential activity when added to cells treated with 5‐azadC. When treated with both drugs, nuclei had higher texture abnormalities. In this setting, reduction in MMP‐9 expression was observed, whereas MMP‐2 expression remained unaffected.

Conclusions

These data show that hypomethylating drug 5‐azadC and histone deacetylase inhibitor TSA were able to induce modulation of higher order chromatin organization and gelatinase expression in human HT1080 fibrosarcoma cells.
  相似文献   

12.
The phenomenon of habituation is considered in plant tissue cultures to be a real process of chemical tumorogenesis; the cultures acquire the capacity of autonomous growth in a hormone-free medium under the influence of a variety of chemical and physical agents. Treatments with 5-azacytidine (AzaC) of in vitro cultured cells of the Nicotiana glauca x N. langsdorffii nontumorous hybrid (NNT) during the culture cycle led to the induction of a habituated phenotype. The repetitive DNA sequences showed a significant lower level of endogenous methylation in the treated cells in comparison with the normal ones. It is worth noting that it was impossible until now to habituate this strain by conventional methods and that the treatments were effective only in the first 5 days of subculturing; various evidence (cytological and biochemical) pointed out a phenomenon of DNA amplification, occurring in the same period. Moreover, analysis of DNA from control and treated cells shows the induction of variations in the endogenous methylation pattern by AzaC in a critical period of cell culture. These results suggest that demethylation can act as a switch from hormone-dependent to autonomous proliferation by activation of genes coding for or regulating the synthesis of growth factors.  相似文献   

13.
14.
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.  相似文献   

15.
16.
When mouse-teratocarcinoma-derived fibroblasts (1246 cell line) are subjected to treatment with the inhibitor of DNA methylation, 5-Azacytidine (5 AzaC), they transiently express at 55-kilodalton intermediate-filament protein recognized by the epithelial-specific monoclonal antibody, TROMA-1, although they retain a fibroblastic morphology. However, rare clones (e.g., the 1339 cell line) that permanently express the antigen recognized by TROMA-1 can be derived from the 5 AzaC-treated 1246 population, and these clones have an epithelial phenotype. In the present study, we used cloned DNA probes to demonstrate that, in 1246 fibroblasts, 5 AzaC induces the appearance of Endo-A mRNA. High levels of Endo-A mRNA were also detected in the epithelial derivative, cell line 1339. In both cases, the capping site of the Endo-A mRNA was found to be the same as that in epithelial cells which normally express this RNA.  相似文献   

17.
18.
Most loci that are regulated by genomic imprinting have differentially methylated regions (DMRs). Previously, we showed that the DMRs of the mouse Snrpn and U2af1-rs1 genes have paternal allele-specific patterns of acetylation on histones H3 and H4. To investigate the maintenance of acetylation at these DMRs, we performed chromatin immunoprecipitation on trichostatin-A (TSA)-treated and control cells. In embryonic stem (ES) cells and fibroblasts, brief (6-h) TSA treatment induces global hyperacetylation of H3 and H4. In ES cells only, TSA led to a selective increase in maternal acetylation at U2af1-rs1, at lysine 5 of H4 and at lysine 14 of H3. TSA treatment of ES cells did not affect DNA methylation or expression of U2af1-rs1, but was sufficient to increase DNase I sensitivity along the maternal allele to a level comparable with that of the paternal allele. In fibroblasts, TSA did not alter U2af1-rs1 acetylation, and the parental alleles retained their differential DNase I sensitivity. At Snrpn, no changes in acetylation were observed in the TSA-treated cells. Our data suggest that the mechanisms regulating histone acetylation at DMRs are locus and developmental stage-specific and are distinct from those effecting global levels of acetylation. Furthermore, it seems that the allelic U2af1-rs1 acetylation determines DNase I sensitivity/chromatin conformation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号