共查询到20条相似文献,搜索用时 0 毫秒
1.
J Greer 《Journal of molecular biology》1971,59(1):107-126
2.
The ethylisocyanide equilibria of all the five known hemoglobins M, namely Hb M Iwate (alpha287 Tyrbeta2), Hb M Boston (alpha258 Tyrbeta2), Hb M Hyde Park (alpha2beta292 Tyr), Hb M Saskatoon (alpha2beta263 tyr), and Hb M Milwaukee-I (alpha2beta267 Glu), were studied both in the half-ferric and fully reduced heme states. In the half-ferric state, no heme-heme interaction was observed for Hb M Iwate, Hb M Boston, and Hb M Hyde Park, but Hb M Saskatoon and Hb M Milwaukee-I show small but definite heme-heme interaction with Hill's n of 1.3. The beta chain mutants, Hb M Hyde Park and Hb M Saskatoon, have almost normal affinity for ethylisocyanide and a normal Bohr effect, whereas the alpha chain mutants, Hb M Iwate and Hb M Boston, have abnormally low affinity and almost no Bohr effect. Hb M Milwaukee-I showed a large Bohr effect and low affinity. These results are consistent qualitatively with those on oxygen equilibria reported previously. In the fully reduced state, in which all four hemes were in the ferrous state and capable of binding ethylisocyanide distinct differences were found in the extent of heme-heme interaction. Namely, the n values for proximal histidine mutants, Hb M Iwate and Hb M Hyde Park, were 1.1 and 1.0, respectively, whereas the distal histidine mutants, Hb M Boston and Hb M Saskatoon, showed high n values of 2.4 and 1.6, respectively. Hb M Milwaukee-I also exhibited a high n value of 2.0 The ethylisocyanide affinity of the four histidine mutants was high compared with that of Hb A, while that for Hb M Milwaukee-I was almost normal. All five Hbs M had approximately normal magnitudes of Bohr effect. In the half-ferric state, the proximal and distal histidine mutants of the same chain showed similar affinity for ethylisocyanide and Bohr effect, rather different from those of the mutants of the opposite chain. These differences seem to be derived from the difference of abnormal bonding of ferric iron to tyrosine or glutamic acid. On the other hand, the reduction of iron, which abolished the abnormal bonding and made all of the chains capable of binding ligand, extinguished the differences of alpha and beta chains, and the effect of amino acid side chains close to iron on ligand binding properties became clear. Proximal histidine, which is considered to trigger the transition between the T and R states, seems to be essential to the heme-heme interaction. 相似文献
3.
The heat of reaction of CO gas with the alpha2Mmetbeta2 and alpha2Mbeta2 species of the alpha-chain mutant hemoglobin M Iwate has been studied in buffers with different heats of ionization of 25degrees and in the absence of organic phosphates. For the alpha2Mmetbeta2deoxy species we find a small Bohr effect (0.12 mol of H+/mol of CO) which is in correspondence with that found in equilibrium studies. The heat of reaction, when corrected for proton reaction with buffer, is -18.4 +/- 0.3 kcal/mol of CO at pH 7.4 At pH 9 the same value is observed within experimental error. This value compares closely with heats of reaction of CO with myoglobin and with van't Hoff determinations of the heat of oxygen binding to isolated hemoglobin alpha and beta chains after correction for the heat of replacement of O2 by CO. Furthermore, an analysis of the differential heat of ligand binding as a function of the extent of reaction indicated that, within experimental error, the heat of reaction with the first beta-chain heme in alpha2Mmetbeta2deoxy is the same as the second. Since the quaternary Tleads to R transition is blocked in this mutant hemoglobin, we compared it with Hb A to estimate the enthalpic component of the allosteric T leads to R transition in Hb A. The heats of reaction with CO(g) and Hb A are -15.7 +/- 0.5 and -20.9 +/- 0.5 kcal/mol at pH 7.4 and 9.0, respectively. In going from the T to the R state we find an enthalpy of transition of 9 +/- 2.5 kcal at pH 7.4 and -12 +/- 2.5 kcal at pH 9.0. From published free energies of transsition we conclude the T leads to R transition is enthalpically controlled at p/ 7.4 but entropically controlled at pH 9.0 A near normal Bohr effect is estimated from heats of reaction of CO with alpha2Mdeoxybeta2deoxy in various buffers. A large than normal heat of reaction (-21.6 +/- 0.5 kcal/mol of CO) is attributed to the abnormal alpha chains in Hb M Iwate. 相似文献
4.
The reduction of hemoglobins (Hb) M such as Hb M Iwate, Hb M Boston, Hb M Hyde Park, Hb M Saskatoon, and Hb M Milwaukee by the ferredoxin and ferredoxin-NADP reductase system was studied systematically under anaerobic conditions. The enzyme system could not reduce the abnormal chains in methemoglobin M with an alpha chain anomaly but effectively converted the methemoglobin M with a beta chain anomaly to the fully reduced form. During the reduction of the methemoglobin M with a beta chain anomaly, the spectra showed a shift of the initial isosbestic points, indicating the possible formation of intermediate hemoglobins in the partially reduced state. On the reduction mode of the methemoglobin M, however, it was classified into three types. 1) Only normal chains were reduced (Hb M Iwate and Hb M Boston). 2) Sequential reduction from normal to abnormal chains occurred (Hb M Milwaukee and Hb M Hyde Park). 3) Normal chains were preferentially reduced, but the reduction of abnormal chains also started at the same rate when the reduction of normal ones had proceeded halfway (Hb M Saskatoon). These differences are discussed in relation to the redox potential of each abnormal chain in methemoglobin M. 相似文献
5.
6.
The optical contribution of the beta chains to the spectrum of hemoglobin M Iwate (alpha87his leads to tyr)2beta2a was subtracted with the aid of a computer so that the spectrum of ferric alpha chains was obtained. Tyrosinate binding to the heme is suggested from spectral resemblance to ferric heme phenolate in dimethyl sulfoxide. The slow reduction of the abnormal ferric alpha chains in hemoglobin M Iwate by dithionite was studied spectrophotometrically both in the presence and absence of CO. The rate of reduction was found to be dependent on the state of ligation of the normal beta chains. The CO-ligated form of the reduced alpha chains bears strong spectral resemblance to the CO-ligated form of the reduced beta chains suggesting similar structures for the heme-ligand complex. A model compound with similar optical properties to the CO-ligated protein can be prepared in dimethyl sulfoxide from hemin chloride, imidazole, and CO using chromous acetate as the heme reductant. Substitution of phenolate for imidazole produces a spectral entity so different from that observed in the protein as to rule out tyrosinate ligation to ferrous heme of the alpha chains when CO is bound. 相似文献
7.
L A Noll H T Gaud S J Gill K Gersonde B G Barisas 《Biochemical and biophysical research communications》1979,88(4):1288-1293
Enthalpies of inositol hexaphosphate (IHP) binding to deoxy and carbonmonoxy (CO) HbA and HbM Iwate have been determined calorimetrically and compared as functions of pH. Values for deoxy HbA and for deoxy HbM Iwate are similar with CO HbM Iwate yielding slightly less heat of reaction. The results support the existence of both deoxy and CO HbM Iwate in T-like structures with only minor modifications occurring upon CO binding. For HbA observed heats of IHP binding have been corrected for heats of extraction of reacting protons from buffer. The resulting intrinsic IHP binding enthalpies show consistent values of ?7 to ?11 kcal/mol proton absorbed in binding. We suggest that a major driving force for organic phosphate binding is the exothermic protonation of histidine and/or a α-amino nitrogens induced by proximity of phosphate negative charges. 相似文献
8.
Cu-thionein from yeast was investigated by EPR spectroscopy to probe the oxidation state of copper, and the effects on it of oxidizing and reducing agents. At pH 0.2 the copper was released, but no EPR signal from Cu(II) was observed, unless air was present. Optical experiments did not detect any disulphide groups which might have been formed during anaerobic release of copper. The mercurial, p-hydroxymercuribenzoate caused the release of EPR-detectable copper only under aerobic conditions, and EDTA caused release of Cu(II) on heating. No reduction of the copper-thiolate units in Cu-thionein by ascorbate was detected. Potentiometric titrations with hexachloroiridate(IV) or hexacyanoferrate(III) produced several different Cu(II) EPR signals at various stages of oxidation. The former oxidizing agent required a lower oxidation-reduction potential (+350 mV) to oxidize the copper, than the latter (+410 mV) and neither titration was fully reversible. The EPR signal from Cu(II) oxidized by hexachloroiridate(IV) resembled that produced by p-hydroxy-mercuribenzoate in air, suggesting that the copper was released from its thiolate ligands. It is concluded that the EPR non-detectable copper in the native protein is Cu(I). Oxidation-reduction of the copper-thiolate clusters of Cu-thionein is proposed to be decisive for controlling storage and transport of cellular copper. 相似文献
9.
M. Chevion J. Peisach W. E. Blumberg 《International journal of biological macromolecules》1979,1(5):208-210
The nitrosyl derivative of haemoglobin M Iwate, a haemoglobin variant which has functional beta chains and non-functional alpha chains, is known to exist only in a low affinity form. It shows a nine-line superhyperfine (SHF) pattern in the low temperature electron paramegnetic resonance (e.p.r.) spectrum, even in the presence of inositol hexaphosphate. This provides further support for the suggestion (Chevion, M., Stern, A., Peisach, J., Blumberg, W. E. and Simon, S. Biochemistry 1978 bd17, 1745) that the beta chains of tetrameric, fully ligated, nitrosyl derivatives of all haemoglobins invariably exhibit an e.p.r. spectrum with a nine-line SHF pattern regardless of the affinity state of the molecule. On the other hand, nitrosyl ferrous alpha chains within the haemoglobin tetramer can exhibit an e.p.r. spectrum with either a nine-line or a three-line SHF pattern which is dependent upon the affinity state of the molecule. 相似文献
10.
Oxidation-reduction properties and complexation reactions of the iron-molybdenum cofactor of nitrogenase 总被引:9,自引:0,他引:9
The interactions of the iron-molybdenum cofactor, FeMoco, isolated from acid-treated Azotobacter vinelandii molybdenum-iron protein (Av1) with EDTA and thiophenol in N-methylformamide solution have been reinvestigated. Our studies show that EDTA alone is sufficient to eliminate the EPR signal of dithionite-reduced FeMoco. Neither light/5-deazaflavin nor carbon monoxide are required, which implies that this EPR-silent form of FeMoco does not correspond to the EPR-silent, substrate-reducing state of Av1. As EDTA-treated FeMoco does not regain EPR activity on addition of sodium dithionite or thiophenol, it is apparently distinct from the EPR-silent form of either dye-oxidized FeMoco or dye-oxidized Av1. Thiophenol sharpens the EPR signal of dithionite-reduced FeMoco and shifts the g = 3.3 feature to g = 3.6. This shift is complete at 1:1 ratio of thiophenol/Mo atom, while the EDTA effect requires about 40 molecules/Mo atom. Thiophenol and EDTA probably affect different sites of FeMoco. The binding of either reactant does not affect the activity of FeMoco as measured by its ability to reconstitute extracts of A. vinelandii mutant UW45. 相似文献
11.
Rupon JW Domingo SR Smith SV Gummadi BK Shields H Ballas SK King SB Kim-Shapiro DB 《Biophysical chemistry》2000,84(1):1-11
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients. 相似文献
12.
Oxygen equilibrium of hemoglobin M-Hyde Park 总被引:2,自引:0,他引:2
13.
14.
Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed. 相似文献
15.
Hydroxyurea represents an approved treatment for sickle cell anemia and acts as a nitric oxide donor under oxidative conditions in vitro. Electron paramagnetic resonance spectroscopy shows that hydroxyurea reacts with oxy-, deoxy-, and methemoglobin to produce 2-6% of iron nitrosyl hemoglobin. No S-nitrosohemoglobin forms during these reactions. Cyanide and carbon monoxide trapping studies reveal that hydroxyurea oxidizes deoxyhemoglobin to methemoglobin and reduces methemoglobin to deoxyhemoglobin. Similar experiments reveal that iron nitrosyl hemoglobin formation specifically occurs during the reaction of hydroxyurea and methemoglobin. Experiments with hydroxyurea analogues indicate that nitric oxide transfer requires an unsubstituted acylhydroxylamine group and that the reactions of hydroxyurea and deoxy- and methemoglobin likely proceed by inner-sphere mechanisms. The formation of nitrate during the reaction of hydroxyurea and oxyhemoglobin and the lack of nitrous oxide production in these reactions suggest the intermediacy of nitric oxide as opposed to its redox form nitroxyl. A mechanistic model that includes a redox cycle between deoxyhemoglobin and methemoglobin has been forwarded to explain these results that define the reactivity of hydroxyurea and hemoglobin. These direct nitric oxide producing reactions of hydroxyurea and hemoglobin may contribute to the overall pathophysiological properties of this drug. 相似文献
16.
Unusual CO bonding geometry in abnormal subunits of hemoglobin M Boston and hemoglobin M Saskatoon 总被引:2,自引:0,他引:2
To clarify the role of the proximal histidine (F8-His), distal His (E7-His), and E11 valine (E11-Val) in ligand binding of hemoglobin (Hb), we have investigated the resonance Raman (RR) spectra of the carbon monoxide adduct of Hbs M (COHb M) in which one of these residues was genetically replaced by another amino acid in either the alpha or beta subunit. In the fully reduced state, all Hbs M gave v3 at approximately 1472 cm-1 and vFe-His at 214-218 cm-1, indicating that they have a pentacoordinate heme and the heme iron is bound to either E7-His or F8-His. The porphyrin skeletal vibrations of the COHb M were essentially unaltered by replacements of E7- or F8-His with tyrosine (Tyr) and of E11-Val by glutamic acid (Glu). The vCO, vFe-CO, and delta Fe-C-O frequencies of COHb M Iwate (alpha F8-His----Tyr), COHb M Hyde Park (beta F8-His----Tyr), and COHb M Milwaukee (beta E11-Val----Glu) were nearly identical with those of COHb A. In contrast, the RR spectra of COHb M Boston (alpha E7-His----Tyr) and COHb M Saskatoon (beta E7-His----Tyr) gave two new Raman bands derived from the abnormal subunits, vFe-CO at 490 cm-1 and vCO at 1972 cm-1, in addition to those from the normal subunits at 505 cm-1 (vFe-CO) and 1952 cm-1 (vCO). The CO adduct of the abnormal subunits exhibited apparently no photodissociation upon illumination of CW laser with a stationary cell under which the normal subunit exhibited complete photodissociation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
The oxidation-reduction equilibrium of the gamma chains of human fetal hemoglobin (Hb F) has been studied and compared with that of the alpha and beta chains of human adult hemoglobin (Hb A). The effects of the sulfhydryl (--SH) reagents, iodoacetate, iodoacetamide, and p-mercuribenzoate (PMB), on the three kinds of chains and on Hb F have been compared. The midpoint potentials (E-m) of all three sorts of chains are lower than those of tetrameric hemoglobin A or F. The E-m values of alpha chains are the lowest, E-m = 0.049 volt at 6 degrees, and are unaffected by pH change or by PMB treatment, at least from pH 6 to 8. The E-m values of beta-SH chains are higher; E-m = 0.102 volt at pH 7, decreasing to 0.050 volt at pH 8, both at 6 degrees. These results agree with those of Banerjee and Cassoly ((1969) J. Mol. Biol. 42, 337-349). They reported no effect of PMB on beta chains, but we find that 2 eq of PMB/chain raise E--M to 0.139 volt at pH 7 at 6 degrees, chiefly as the result of reaction at beta-93, not at beta-112. Carboxymethylation at beta-93 has an insignificant effect compared with that of PMB. The oxidation-reduction potential of gamma chains is similar to that of beta chains. E-m = 0.098 volt at pH 7 at 6 degrees, decreasing to 0.064 at pH 8 and 0.010 at pH 9. The effects of --SH reagents, reacting at position gamma-93 (the only --SH group present in gamma chains), are essentially the same as those seen with beta chains. The oxidation-reduction potential of Hb F is almost identical with that of Hb A, except for being 0.008 volt lower at pH 6 at 6 degrees. This agrees with the results reported by Flohe and Uehleke ((1966) Life Sci. 5, 1041-1045). PMB or iodoacetamide treatment lowers E-m by 0.02 to 0.03 volt, depending on the pH, from 6 to 9, in much the same way as previously reported for Hb A(Brunori, M., Taylor, J.F., Antonini, E., Wyman, J., and Rossi-Fanelli, A. (1967) J. Biol. Chem. 242, 2295-2300). The "residual oxidation Bohr effect" noted in Hb F can be attributed to the oxidation Bohr effect of the gamma chains. The apparent pK of the heme-linked water molecule was found at 25 degrees to be, for Hb F, 8.1; for gamma-SH chains, 7.85; for gamma-PMB chains, 8.35; and for gamma chains treated with iodoacetate, 7.80. Sedimentation coefficients, s-20, w, at a protein concentration of 5 mg/ml, were found to be, for fetal hemoglobin 4.09, for iodoacetamide-treated fetal hemoglobin 4.04, for PMB-treated fetal hemoglobin 3.41, for fetal gamma-SH chains 4.25, and for fetal gamma-PMB chains 3.08. 相似文献
18.
19.
Optical spectra have been taken in the Soret band (440-400 nm) under different oxygen partial pressures for hemoglobin (Hb) A0 at pH 7.0, 15 degrees C, 2-3 mM heme, 30 mM inositol hexaphosphate, 0.1 Hepes and 0.1 M NaCl. Application of the matrix method of singular value decomposition (SVD) to the difference spectra for different oxygen pressures shows the presence of at least two distinct optical transitions. From this result one concludes that the optical response to oxygen binding is nonlinear in the Soret band. The degree of nonlinearity has been determined by fitting the data at different wavelengths to the four-step reaction Adair equation with the inclusion of optical parameters that describe the intermediate oxygenated species. It is found that the data are well-represented by two optical parameters at each wavelengths, one which represents the optical change for the addition of the first and second oxygen molecules and the other which corresponds to the change for the addition of the third and fourth oxygen molecules. The ratio of these optical parameters depends only moderately upon wavelength with an average value of 0.8 over the Soret band. Thus, there is an approx. 20% smaller optical response for the first two ligated species than that for the last two ligated species. The overall Adair equilibrium constants are evaluated as follows: beta 1 = 0.081 +/- 0.003 Torr-1, beta 2 = 2.53 x 10(-3) +/- 2.4 x 10(-4) Torr-2, beta 3 = 1.25 x 10(-5) +/- 1.0 x 10(-6) Torr-3, beta 4 = 1.77 x 10(-6) +/- 1.5 x 10(-7) Torr-4. 相似文献
20.