首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of saturated, monounsaturated and polyunsaturated non-esterified fatty acids on the rate of transfer of radiolabeled cholesteryl esters from high density lipoproteins (HDL) to low density lipoproteins (LDL), induced by the cholesteryl ester transfer protein (CETP), have been studied. Human high-density lipoproteins-subfraction 3 (HDL3) containing radiolabeled cholesteryl esters were incubated with LDL at 37 degrees C with or without CETP and in the absence or in the presence of non-esterified fatty acids. Less than 6% of the total radioactivity was recovered in the LDL fraction after incubation of HDL3, and LDL for 3 h at 37 degrees C in the absence of CETP, regardless of whether or not non-esterified fatty acids were added. The addition of CETP to the incubation mixture induced a time-dependent redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. Non-esterified fatty acids were found to alter the rate of transfer of cholesteryl esters induced by CETP. While short chain saturated non-esterified fatty acids (caprylic and capric acids) had no effect on the rate of transfer of cholesteryl esters, the medium and long chain ones (lauric, myristic, palmitic and stearic acids) significantly increased the CETP-mediated transfers from HDL3 to LDL. At low concentrations, unsaturated fatty acids also stimulated the CETP-mediated redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. As the concentration of either oleic, linoleic or arachidonic acids increased to higher levels, a significant proportion of fatty acids remained unassociated with lipoprotein particles. Under these circumstances the transfer process was inhibited. These results show that non-esterified fatty acids can modulate the CETP-mediated transfer of cholesteryl esters from HDL to LDL and that this effect is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

2.
The effects of various non-esterified fatty acids on the CETP-mediated particle size redistribution of HDL were studied by incubating HDL3 and CETP for 24 h at 37 degrees C in the absence or in the presence of either saturated, monounsaturated or polyunsaturated non-esterified fatty acids. In the absence of non-esterified fatty acids, CETP induced a redistribution of the initial population of HDL3 (Stokes' radius 4.3 nm) by promoting the appearance of one larger (Stokes' radius 4.8 nm) and two smaller (Stokes' radii 3.9 and 3.7 nm) HDL subpopulations. Whereas the non-esterified fatty acids alone did not modify the HDL3 distribution profile, they were able to alter markedly the capacity of CETP to induce the particle size redistribution of HDL. All the saturated fatty acids with at least 10 carbons were able to increase the formation of the very small sized particles (Stokes' radius 3.7 nm) in a concentration dependent manner, the medium chain fatty acids (12 and 14 carbons) being the best activators. The potential effect of non-esterified fatty acids was also influenced by the presence of double bonds in their monomeric carbon chain. While at low concentrations of non-esterified fatty acids (0.1 mmol/l) the enhancement of the formation of very small HDL particles appeared to be greater with oleic and linoleic acids than with stearic acid, at higher concentrations (0.4 mmol/l), oleic, linoleic and arachidonic acids decreased the formation of the 3.7 nm radius particles. The inhibition of the process at high concentrations of unsaturated fatty acids was linked to the degree of unsaturation of their carbon chain, arachidonic acid being the strongest inhibitor. The present study has demonstrated that non-esterified fatty acids can modulate the particle size redistribution of HDL3 mediated by the cholesteryl ester transfer protein even in the absence of any other lipoprotein classes. The effect of non-esterified fatty acid is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

3.
Córsico B  Liou HL  Storch J 《Biochemistry》2004,43(12):3600-3607
Intestinal fatty acid binding protein (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms for the transfer of fatty acids (FAs) to acceptor membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP, transfer occurs by diffusion through the aqueous phase. Earlier, we had shown that the helical domain of IFABP is critical in determining its collisional FA transfer mechanism. In the study presented here, we have engineered a pair of chimeric proteins, one with the "body" (ligand binding domain) of IFABP and the alpha-helical region of LFABP (alphaLbetaIFABP) and the other with the ligand binding pocket of LFABP and the helical domain of IFABP (alphaIbetaLFABP). The objective of this work was to determine whether the change in the alpha-helical domain of each FABP would alter the rate and mechanism of transfer of FA from the chimeric proteins in comparison with those of the wild-type proteins. The fatty acid transfer properties of the FABP chimeras were examined using a fluorescence resonance transfer assay. The results showed a significant modification of the absolute rate of FA transfer from the chimeric proteins compared to that of the wild type, indicating that the slower rate of FA transfer observed for wild-type LFABP relative to that of wild-type IFABP is, in part, determined by the helical domain of the proteins. In addition to these quantitative changes, it was of great interest to observe that the apparent mechanism of FA transfer also changed when the alpha-helical domain was exchanged, with transfer from alphaLbetaIFABP occurring by aqueous diffusion and transfer from alphaIbetaLFABP occurring via protein-membrane collisional interactions. These results demonstrate that the alpha-helical region of LFABP is responsible for its diffusional mechanism of fatty acid transfer to membranes.  相似文献   

4.
5.
We have isolated from human plasma a unique subclass of the high density lipoproteins (HDL) which contains a potent lipid transfer inhibitor protein (LTIP) that inhibited cholesteryl ester, triglyceride, and phospholipid transfer mediated by the lipid transfer protein, LTP-I, and phospholipid transfer mediated by the phospholipid transfer protein, LTP-II. This HDL subclass not only inhibited cholesteryl ester transfer from HDL to LDL or VLDL, but also inhibited cholesteryl ester transfer from HDL to HDL. The inhibitor protein was isolated by sequential chromatography of human whole plasma on dextran sulfate-cellulose, phenyl-Sepharose, and chromatofocusing chromatography. Isolated LTIP had the following characteristics: an apparent molecular weight of 29,000 +/- 1,000, (n = 10) by sodium dodecyl sulfate gel electrophoresis, and an isoelectric point of 4.6 as determined by chromatofocusing. LTIP remained functional following delipidation with organic solvents. Antibody to LTIP was produced, and an immunoaffinity column of the anti-LTIP was prepared. Passage of human, rat, or pig whole plasma over the anti-LTIP column enhanced cholesteryl ester transfer activity in human (17%), pig (200%), and rat plasma (125%). The HDL subclass containing LTIP was isolated from whole human HDL (d 1.063-1.21 g/ml) by immunoaffinity chromatography. The isolated LTIP-HDL complex was shown to: i) contain about 60% protein and 40% lipid, ii) have alpha and pre-beta electrophoretic mobility, iii) have particle size distribution somewhat smaller than whole HDL, about 100,000 daltons, as determined by gradient gel electrophoresis, and iv) contain only a small amount of apoA-I (less than 5%) and a trace amount of apoA-II. Assay of ultracentrifugally obtained lipoprotein fractions revealed that approximately 85% of the total functional LTIP activity was in the d 1.063-1.21 g/ml HDL fraction. Furthermore, immunoblot analysis of whole plasma by nondenaturing gradient gel electrophoresis revealed that LTIP was found predominantly in particles in the size range of HDL. This unique HDL subclass may play an important role in the regulation of plasma lipid transfer and metabolism.  相似文献   

6.
Bovine, human and rat serum albumins were defatted and palmitic acid, oleic acid and lauric acid added in various molar ratios. The binding of L-tryptophan to these albumins was measured at 20 degrees C in a 0.138 M salt solution at pH 7.4, by using an ultrafiltration technique, and analysed in terms of n, the number of available tryptophan-binding sites per albumin molecule, with apparent association constant, k. 2. n and k were 0.90 and 2.3x10(-4)M(minus-1) respectively for defatted bovine serum albumin and 0.87 and 9.7x10(-3)M(-minus-1) for human albumin. Addition of palmitic acid did not decrease n until the molar ratio, fatty acid/bovine albumin, approached and exceeded 2. The decrease in k was small and progressive. In contrast, lauric caused a marked decrease in n and k at ratios as low as 0.5. A similar distinction between the effects on n of palmitic acid and oleic acid and those of lauric acid was seen for human albumin. k for human albumin was not significantly affected by fatty acids under the conditions studied. 3. It is concluded that primary long-chain fatty acid sites interact only weakly with the tryptophan site on albumin and that inhibition of tryptophan binding occurs when secondary long-chain sites are occupied. Primary medium-chain fatty acid sites are distinct from primary long-chain sites but may be grouped with secondary long-chain sites. 4. The relationship between free and bound tryptophan in samples of rat plasma (Stoner et al., 1975) is discussed in terms of a similar but limited study of rat albumin.  相似文献   

7.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

8.
Lipid transfer inhibitor protein (LTIP) is a physiologic regulator of cholesteryl ester transfer protein (CETP) function. We previously reported that LTIP activity is localized to LDL, consistent with its greater inhibitory activity on this lipoprotein. With a recently described immunoassay for LTIP, we investigated whether LTIP mass is similarly distributed. Plasma fractionated by gel filtration chromatography revealed two LTIP protein peaks, one coeluting with LDL, and another of approximately 470 kDa. The 470 kDa LTIP complex had a density of 1.134 g/ml, indicating approximately 50% lipid content, and contained apolipoprotein A-I. By mass spectrometry, partially purified 470 kDa LTIP also contains apolipoproteins C-II, D, E, J, and paraoxonase 1. Unlike LDL-associated LTIP, the 470 kDa LTIP complex does not inhibit CETP activity. In normolipidemic subjects, approximately 25% of LTIP is in the LDL-associated, active form. In hypercholesterolemia,this increases to 50%, suggesting that lipoprotein composition may influence the status of LTIP activity. Incubation (37 degrees C) of normolipidemic plasma increased active, LDL-associated LTIP up to 3-fold at the expense of the inactive pool. Paraoxon inhibited this shift by 50%. Overall, these studies show that LTIP activity is controlled by its reversible incorporation into an inactive complex. This may provide for short-term fine-tuning of lipoprotein remodeling mediated by CETP.  相似文献   

9.
Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the alphaI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the 'body' (ligand binding domain) of IFABP and the alphaI-helix of LFABP (alpha(I)LbetaIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from alpha(I)LbetaIFABP compared to IFABP. The results indicate that the alphaI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the alphaII-helix in the formation of a protein-membrane "collisional complex". Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further support the importance of the alphaI helix of IFABP in its physical interaction with membranes.  相似文献   

10.
11.
Non-esterified fatty acids are used to a limited extent as an energy source in the newborn-mammalian heart. Therefore additional roles for palmitic and oleic acids during this early period of growth and development were investigated in the cultured neonatal-rat heart cell model system. Our results indicate significant differences in nonesterified-fatty-acid metabolism exist in this system in comparison with the adult rat or embryonic chick heart. Initial rates of depletion of palmitate and oleate from serum-free growth medium by heart cells obtained from 2-day-old rats and maintained in culture for 10 or 11 days were 111 +/- 2 and 115 +/- 3 pmol/min per mg of protein respectively. In serum-containing medium, the initial depletion rates were 103 +/- 3 and 122 +/- 4 pmol/min per mg of protein respectively, when endogenous serum nonesterified-fatty-acid concentrations were included in rate calculations. Less than 1% of the intracellularly incorporated fatty acids were found in aqueous products at any time. After 25 h, 15.5% of the initial palmitate was deposited intracellularly in the phosphatidylcholine lipid fraction, 4.2% in the triacylglycerol + fatty-acid-ester fraction and 3.1% in the sphingomyelin fraction. These results contradict the classical view, based on findings with the lipid-dependent adult heart, that exogenous nonesterified fatty acids are directed intracellularly primarily to pathways of oxidation or to storage as triacylglycerol. More importantly, it underscores the significance of exogenous non-esterified fatty acids in membrane biosynthesis of the developing mammalian heart. Included here is a new method for one-dimensional t.l.c. separation of metabolically important polar lipids.  相似文献   

12.
Non-esterified fatty acids (NEFA) can significantly interfere with the radioimmunoassay of PGE and PGF using commercially available anti-sera. PGB1 antigen-antibody binding is 50% inhibited by 110 pg of PGB1, 48 ng of PGE1, 3.5 μg of PGF, or 9.0 μg linoleic, 14 μg arachidonic, 22 μg δ-linoleic, 40 μg palmitoleic or 45 μg oleic acids. PGF antigen-antibody binding is 50% inhibited by 270 pg of PGF, 70 ng of PGE1, or 4.2 μg arachidonic, 14 μg δ-linolenic, 22 μg linoleic, 70 μg palmitoleic or 110 μg oleic acids. Physiological levels of NEFA, such as the quantities found in small volumes of plasma, are sufficient to prohibit accurate prostaglandin measurements. Chromatography on small columns of silicic acid proved to be an effective technique for separation of NEFA and prostaglandin from lipid extracts, however, the results of this study suggest that the interference produced by the presence of NEFA in the measurement of prostaglandin from certain physiological fluids may be avoided if the prostaglandins are not extracted prior to radioimmunoassay.  相似文献   

13.
The relative contributions of esterified and non-esterified fatty acids to placental lipid transfer were estimated in 7 pregnant guinea-pigs. The fetal side of the placenta was perfused in situ whilst a constant infusion of a mixture of [3H]triacylglycerol emulsion (Intralipid) and [14C]non-esterified fatty acid was given i.v. to the anaesthetised mother. Considerable interconversion of the lipid moieties circulating in the mother was observed. Metabolic turnover rates of triacylglycerol and non-esterified fatty acid were found to be 14.6 mmol/day and 55 mmol/day respectively. No intact triacylglycerol was found to cross the placenta from the mother. Relatively more [3H]non-esterified fatty acid than [14C]non-esterified fatty acid was found in the perfusion fluid when compared with simultaneous circulating maternal levels of these non-esterified fatty acids indicating hydrolysis and direct transfer of [3H]triacylglycerol within the placental tissue. This hydrolysis resulted in the transfer of approximately 0.2 mmol non-esterified fatty acid/day across each placenta at this gestational age (53 days). This is in contrast to the transfer of circulating maternal non-esterified fatty acids, these can be calculated to give a mother to fetus unidirectional transport value of 3.62 mmol/day/placenta, but the total maternal to fetal flux taking into account back transfer to the mother is 1.26 mmol/day/placenta. Results from simultaneous carotid artery and uterine vein samples showed that approximately 40% of the maternal arterial triacylglycerol is removed during a pass through the uterine bed, but the majority of the triacylglycerol re-emerges in the uterine vein as non-esterified fatty acids, and masks the uterine vein uptake of circulating maternal non-esterified fatty acid. The uterine vein non-esterified fatty acid concentration is highly dependent upon levels of circulating maternal triacylglycerols and apparent uterine bed production of non-esterified fatty acid occurs when maternal triacylglycerols are high relative to non-esterified fatty acids.  相似文献   

14.
The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.  相似文献   

15.
We report detailed gas chromatography analyses of the non-esterified fatty acids in the sera of female rats during post-natal maturation. A marked age-dependent decrease of concentration is demonstrated for all classes of compounds. Total levels fall from about 0.8 mM at birth to about 0.25 mM, 60 days later. The decrease is most pronounced for the polyunsaturated acids, which represent 27 +/- 9% of total fatty acids at birth and 13 +/- 3% 60 days later. The effects of ovariectomy and adrenalectomy on the free fatty acid levels as a function of age are strikingly different before and after maturation. When ovariectomy is performed at 5, 9 and 15 days, the fatty acid levels respond by a significant (30-40%) decrease; when adrenalectomy is carried out at the same ages, a dramatic 3-5-fold increase of all classes of fatty acids is observed. By contrast, in older animals, both responses have virtually disappeared. Possible mechanisms underlying the age-dependent patterns and behaviour of the serum free fatty acids are briefly discussed.  相似文献   

16.
To better understand the mechanism of lipid transfer protein (LTP) action and the effects of altered lipoprotein composition on its activity, we evaluated the dependence of LTP activity on the concentrations of cholesteryl ester (CE) and/or triglyceride (TG) in the phospholipid bilayer of substrate particles. Phosphatidylcholine (PC)-cholesterol liposomes containing up to 2 mole% TG and/or CE were prepared by cholate dialysis and used as either the donor of lipids to, or the acceptor of lipids from, low density lipoproteins (LDL). CE or TG transfer from liposomes of varying neutral lipid content to LDL showed saturation kinetics with an apparent Km of less than or equal to 0.2 mole%. Throughout this concentration-dependent response. PC transfer, which depended on the same LTP-donor particle binding interactions as those required for neutral lipid transfer, was essentially unchanged. Lipid transfer in the reverse direction (from LDL to liposomes of varying neutral lipid content) followed the same kinetics showing that transfer between the two particles is tightly coupled and bidirectional. When liposomes contained both TG and CE, these lipids competed for transfer in a manner analogous to that previously noted with lipoprotein substrates. In conclusion, CE and TG transfer activities are determined by the concentration of these lipids in the phospholipid surface of donor and acceptor particles. At low TG and CE concentrations, LTP bound to the liposome surface as indicated by PC transfer, but only a portion of these interactions actually facilitated a neutral lipid transfer event. Thus, the overall rate of neutral lipid transfer, and the competition between TG and CE for transfer, depend on the concentrations of these lipids in the phospholipid layer.  相似文献   

17.
18.
The influence of temperature on intramitochondrial protein and enzyme release was studied in control and “lipid-deficient” rat liver mitochondria and in synaptosomal and “cell body” mitochondria of rat brain. (i) The fatty acid composition of the phospolipid fraction was shown to be different in control and lipid-deficient preparations. (ii) Arrhenius curves for temperature-dependent release of protein showed breaks. (iii) When comparing control to lipid-free rat liver mitochondria and cell body to synaptosomal rat brain mitochondria, shifts in the breaks in the Arrhenius plots were observed for release of aspartate aminotransferase, protein and malate dehydrogenase. (iv) Intramitochondrial temperature-dependent, succinate-induced protein release was also studied in rat liver mitochondria which had previously undergone a succinate-induced release and rebinding cycle. These mitochondria showed a temperature-dependent protein release identical to that of untreated mitochondria.  相似文献   

19.
20.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号