首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of an antioestrogen binding site (AEBS), which has high affinity and specificity for nonsteroidal antioestrogens and structurally related compounds, have been studied in rat liver microsomes. When subcellular organelles were separated on Percoll density gradients the distribution of the AEBS paralleled that of NADPH-cytochrome c reductase, indicating that the AEBS is associated with the endoplasmic reticulum. Saturation analysis showed that [3H]tamoxifen was bound to a single class of saturable binding sites in liver microsomes with a KD of 0.9 +/- 0.1 nM at 0 degrees C. The equilibrium KD was not significantly different at 22 degrees C. The KD calculated from the association and dissociation rate constants for [3H]tamoxifen binding at 0 degrees C and 22 degrees C was compatible with the KD measured at equilibrium. Ligand specificity studies using tamoxifen analogues showed qualitatively similar structure-affinity relationships for the AEBS from both rat liver and the MCF 7 breast cancer cell line. In general structural modifications caused correspondingly greater changes in affinity for rat liver AEBS than for MCF 7 AEBS. The AEBS was solubilized from microsomal membranes with sodium cholate. This was the only detergent of nine tested that solubilized the site in high yield without loss of activity. Solubilization using cholate was more effective in the presence of 1 M-NaCl. In the solubilized state there was an apparent loss of [3H]tamoxifen binding activity which could be restored by dilution of the detergent. Gel filtration indicated an Mr of 440,000-490,000 for the AEBS-cholate complex. These studies demonstrate that rat liver contains high concentrations of a microsomal AEBS which has similar properties and specificity to the AEBS previously described in human breast cancer cells. This site can be solubilized by sodium cholate to supply material suitable for further purification.  相似文献   

2.
High affinity (KD 2-4 nM) binding sites (AEBS) for the triphenylethylene antiestrogen, tamoxifen, are found in chicken liver cytosol preparations. These sites exhibit affinity for triphenylethylene derivatives typical of those reported for AEBS in other systems. Although steroids and cholesterol do not compete for the sites, certain oxygenated cholesterol metabolites, particularly 7-ketocholesterol, do so. Hot ethanol extracts of chicken and human serum contain AEBS inhibitory activity. This activity is chromatographically heterogeneous, but a sterol-containing fraction has been isolated in which the 7-ketocholesterol concentration can account for the AEBS inhibitory activity of the fraction.  相似文献   

3.
Estrogen-noncompatible antiestrogen binding sites (AEBS) as well as estrogen receptors (ER), and the growth-inhibitory effect of tamoxifen were investigated in two human endometrial cancer cell lines, IK-90 and HEC-IA cells. IK-90 cells contained specific AEBS, but no ER was found in these cells. Scatchard plot analysis of AEBS in 12,000 g supernatant from IK-90 cells showed a high affinity binding site for tamoxifen (Kd:5.6 +/- 1.0 nM) with the maximum binding site of 457 +/- 47 fmol/mg protein. However, no measurable ER or AEBS was found in HEC-IA cells. The effect of tamoxifen on the growth of cells was found to be identical in both cell lines; the addition of 10 microM tamoxifen to culture medium was cytocidal whereas tamoxifen at lower concentrations (1 nM-1 microM) did not significantly affect the growth of both IK-90 and HEC-IA cells. These results demonstrate for the first time the presence of AEBS in human endometrial cancer cells. The present results also suggest that AEBS does not play a fundamental role in mediating the growth-inhibitory effect of tamoxifen in endometrial cancer cells.  相似文献   

4.
Saturation and competitive binding analyses demonstrated the presence of a high affinity (KD = 0.92 nM), specific antiestrogen binding site (AEBS) in rat liver microsomes and at least 75% of total liver AEBS was recovered in this fraction. When microsomes were further separated into smooth and rough fractions, AEBS was concentrated in the latter. Subsequent dissociation of ribosomes from the rough membranes revealed that AEBS was associated with the membrane and not the ribosomal fraction. Antiestrogen binding activity could not be extracted from membranes with 1 M KCl or 0.5 M acetic acid but could be solubilized with sodium cholate. These data indicate that AEBS is an integral membrane component of the rough microsomal fraction of rat liver.  相似文献   

5.
Gonadotrope-enriched populations were prepared from 42-day old male rats by centrifugal elutriation. They contained 4.8 +/- 0.7% of the cells, 51 +/- 10% of the LH and less than 3% of the PRL (n = 4). Gonadotrope-depleted fractions were also obtained that contained most of PRL cells. Specific antiestrogen binding sites (AEBS) were quantitated in these populations after destruction of estrogen receptor. Results showed the presence of a distinct, specific high affinity binding site for antiestrogen in dispersed pituitary cells and in enriched fractions. However, AEBS are not specific of a pituitary cell type. Thus, AEBS appear different from estrogen receptors in pituitary gland: by the thermal stability of AEBS, by the localization of AEBS in particulate material, by the uniform distribution of AEBS in different populations which differ markedly for E2 binding sites. Whereas the ratio of binding AE/E2 averaged 11.4 in the initial cell suspension it reached only 2.9 in the gonadotropes. The dissociation constants for AEBS were in the same range (1.16 - 2.27 X 10(-9) M) for the different populations.  相似文献   

6.
The triphenylethylene antiestrogens are very potent antagonists of estrogen action in the chicken and manifest little agonist activity compared to their action in other species. The estrogen antagonism is most probably mediated by the estrogen receptor, to which tamoxifen binds with a Ki of 2.6 nM. Tamoxifen is readily metabolized by liver to 4-hydroxytamoxifen, which binds the liver nuclear estrogen receptor with a Ki of 0.1 nM. The Kd of the receptor is 0.7 nM. Estrogen receptor concentrations in liver from immature chickens are relatively low both in nuclear and cytosol fractions. Treatment with estradiol results in 10-fold up-regulation of the nuclear levels to give a total receptor concentration of about 2 pmol/g tissue. Tamoxifen can promote this up-regulation to a limited extent, but interpretation of experimental results is compromised by difficulties with exchange assays in the face of the very high binding affinity of 4-hydroxytamoxifen. Tamoxifen also binds with high affinity (Kd 2-4 nM) and distinctive specificity to antiestrogen binding sites (AEBS) present in a wide variety of chicken tissues and in the highest concentration in the liver (800 pmol/g tissue). Liver and serum contain ether-soluble components which can compete for binding of [3H]tamoxifen to the AEBS. The serum AEBS inhibitory activity is chromatographically heterogeneous and is associated with a sterol-like fraction as well as with a fatty-acid-containing fraction. Tamoxifen treatment of cockerels results in dose- and time-dependent decreases in serum free and esterified cholesterol, and in phospholipids and triglycerides. These changes may reflect estrogen-receptor-independent interactions of tamoxifen.  相似文献   

7.
The binding of [3H]estradiol and [3H]hydroxytamoxifen to the cytosol and microsomal fractions of several human breast tumors was investigated. By washing microsomal membranes with a KCl-free or a KCl-containing medium we could distinguish between intrinsic, extrinsic and contaminant estradiol binding sites in these membranes. We observed that treatment of the microsomes with low salt medium removes about 80% of the total estradiol binding sites, whereas 20% are not extractable. The concentration of unextractable [3H]estradiol binding sites in the microsomes varies in proportion to the level of cytosolic estrogen receptors (ER). About 10% of the total extranuclear specific estrogen binding sites was consistently found tightly associated to the microsomal fraction, which displays an affinity for estradiol (Kd = 0.1-0.6 nM) similar to that of the cytosolic ER. The displacement of [3H]estradiol with unlabeled hormone or with the antiestrogens, nafoxidine, enclomiphene and tamoxifen (TAM) exhibits identical IC50 values either in the cytosol or in the microsomal membranes. On the other hand, the microsomal fraction of breast tumors also binds [3H]hydroxyTAM, but with higher capacity and lower affinity than those of the cytosolic fraction. Furthermore, we did not observe correlation between the concentrations of ER and of antiestrogen binding sites (AEBS) in the tumors. These results indicate that microsomal membranes of human breast tumors contain estrogen binding sites which may be related to the cytosol ER recycling and that specific AEBS are predominantly localized in this membrane system. Furthermore, it is shown that the magnitude of estradiol binding to microsomes depends on the ER positive degree of the tumors, whereas the magnitude of the antiestrogen binding to the microsomes is independent of the ER status of the tumors.  相似文献   

8.
The number of estradiol (E2) binding sites of rat liver unusual estrogen-binding protein (NUEBP) was measured, using a novel modification of the quantitative method of specific UEBP determination. In liver cytosol of mature male and female rats, NUEBP amounted to 6.83 +/- 0.49 and less than 0.05 pmol/mg protein, respectively. Neonatal administration of testosterone-propionate (TP) and TP injections at later periods of ontogenesis increased NUEBP in female rat liver in a similar fashion. The elevated NUEBP was found in the liver of mature ovariectomized females 30 days after cessation of TP injections. Hypophysectomy (but not adrenalectomy or thyroidectomy) prevented TP induction of elevated NUEBP in pubertal females. E2 injections reversibly decreased NUEBP in the liver of all animals under study except of hypophysectomized males. A stimulating regulatory effect of TP on NUEBP in male rat liver was observed only in the case of endogenous androgen deficiency and low NUEBP. TP prevented the E2-dependent decrease of NUEBP upon their simultaneous injections and increased the E2-reduced NUEBP when injected after E2. Hypophysectomy led to a decrease of NUEBP in pubertal males but only slightly affected that in castrated animals. After TP injections to hypophysectomized males, NUEBP returned to a level next to the initial one. It was concluded that estrogen-androgen regulation of the UEBP level led to the maintenance of sex differences in the UEBP content.  相似文献   

9.
Studies were performed to elucidate the ontogeny of a single class of androgen binding protein in male rat liver cytosol which exhibits characteristics of a ligand specific, high affinity (Kd = 2.3 nM), 8S-receptor capable of nuclear translocation. Detectable levels of receptor first appear at 45 days of age in the male and reach maximum concentration at 65 days. Barely detectable levels are seen in females throughout the duration of study (80 days). Gonadectomy in both sexes (65 days) and androgen treatment of oophorectomized females do not alter the normal development of sexual differentiation of the high affinity androgen receptor. After neonatal castration (2 days) and DES replacement however, receptor sites do not undergo differentiation and adult males exhibit female levels. Conversely, neonatal androgen replacement in 2-day castrates partially restores the level of binding sites to control males values (TP, 71%; DHT, 51%). Neonatal castration without replacement retards but does not fully eliminate sexual differentiation of levels of receptor sites in adult males. Likewise, neonatal androgen treatment in females results in a partial masculinization of binding sites. Following hypophysectomy, levels of receptor sites in females are similar to intact or hypophysectomized males; sexual differences in the adult are abolished. These studies suggest that sexual differentiation of specific liver cytosol androgen binding sites in the adult may be partially programmed at birth by testicular androgen and furthermore, adult sexual dimorphism is maintained through an inhibitory influence of the pituitary in the female.  相似文献   

10.
To investigate possible gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to ethanol consumption, both female and male rats (41 days of age) were pair fed liquid diets (with a littermate of the same sex) for 28 days. The diets contained 36% of energy either as ethanol or as additional carbohydrate. After ethanol feeding, the hepatic concentration of fatty acids increased 155% in females (P less than 0.01), whereas there was only a trend for an increase (22%) in males. This was associated with a much smaller increase of cytosolic fatty acid-binding capacity in females (58%) than in males (161%). Whereas the ethanol-induced increase in fatty acid-binding capacity provided an ample excess of binding sites for the fatty acids in males, the increase in females was barely sufficient for the binding of the large increase of fatty acids produced by ethanol in the females. The cytosolic protein responsible for this binding, the liver fatty acid-binding protein of the cytosol (L-FABPc), also promotes esterification of the fatty acids. In keeping with the postulated role of this protein, the ethanol-induced increases in hepatic triacylglycerols, phospholipids, and cholesterol esters were smaller in females than in males. The gender difference in cholesterol esters was associated with parallel changes in acyl-CoA transferase activity. A possible implication of the relatively small and most likely inadequate increase in liver fatty acid-binding capacity and fatty acid esterification during alcohol consumption in the females is that under these circumstances the risk for development of a potentially deleterious accumulation of fatty acids in the liver is increased, thereby contributing to the enhanced vulnerability of females to alcohol-induced hepatotoxicity.  相似文献   

11.
We have implicated histamine as a mediator of proliferation through its binding to novel intracellular receptors (HIC), closely associated with antiestrogen binding sites (AEBS) in microsomes and nuclei. N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine HCl (DPPE), is a potent ligand for AEBS/HIC. We now demonstrate that DPPE stimulates in vivo tumor growth (DMBA-induced mammary cancer in Sprague-Dawley rats and L5178Y leukemia in DBA/2 mice) and synergizes with phorbol-12-myristate-13-acetate (PMA) to induce inflammation and mitotic activity in mouse epidermis. Thus, ligands for intracellular histamine receptors may represent a new class of tumor promoting agents; this finding lends new credence to an important role for histamine in growth.  相似文献   

12.
We have used ammonium sulphate precipitation followed by affinity chromatography to partially purify the estrogen receptor from Xenopus laevis liver which may control the genes for vitellogenin, the precursor of the egg yolk proteins. The rate at which receptor binds estradiol explains the kinetics of the induction of vitellogenin synthesis by estradiol, and the dissociation constant (0.5 X 10(-9) M) explains the concentration dependence of the response, which has a threshold of 10(-9) M estradiol, when 67% of the receptor is bound to estradiol. The estradiol concentration in male liver, which does not make vitellogenin, is 0.18 X 10(-9) M, sufficient to saturate 26% of the receptor, while in female liver, which makes vitellogenin continuously, the estradiol concentration is 3.5 X 10(-9) M, giving 88% saturation of receptor, suggesting that the proportion of occupied receptor decides whether or not the vitellogenin genes are active. In the physiological concentration range, estradiol modulates the level of receptor, which varies between 100 binding sites per nucleus in males and 440 in females, but artificially high concentrations of estradiol raise the level to approximately 1000 sites per nucleus. This suggests that the small increase in vitellogenin mRNA induced by physiological concentrations of estradiol is due to pre-existing receptor and that the much larger increases induced by very high concentrations depends on newly-synthesized receptor.  相似文献   

13.
Huang H  Atshaves BP  Frolov A  Kier AB  Schroeder F 《Biochemistry》2005,44(30):10282-10297
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.  相似文献   

14.
Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3α-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7α-hydroxylase, sterol 27α-hydroxylase, Na+/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.  相似文献   

16.
Treatment of MCF7 human mammary carcinoma cells with the nonsteroidal antioestrogens, tamoxifen and clomiphene, leads to a concentration-dependent decrease in cellular proliferation rate which can be resolved into oestrogen-reversible and oestrogen-irreversible components. This became more clearly apparent when cells were treated with the 4-hydroxylated derivatives of these compounds where, because of enhanced affinity for the oestrogen receptor (ER), the dose-response curves for the two components could be separated. Thus treatment with 4-hydroxyclomiphene resulted in a distinct biphasic effect on cell growth. In the concentration range 10(-10)-10(-8) M, cell proliferation was inhibited in a concentration-dependent manner to a maximum of 60-70%, there was no further effect between 10(-8) and 10(-6) M, but at concentrations greater than 10(-6) M there was another concentration-dependent decrease in cell growth. Studies with a series of vinyl-substituted hydroxytriphenylethylenes revealed that in the nanomolar concentration range, where the effects of the drugs could be completely negated by the simultaneous addition of oestradiol, the potency for growth inhibition was highly correlated with affinity for ER. Such data provide strong evidence that in this concentration range the growth inhibitory effects of nonsteroidal antioestrogens are mediated by the intracellular ER. In the micromolar concentration range the effects of antioestrogens are not completely reversed by oestradiol, potency is not well correlated with affinity for either ER or the antioestrogen binding site (AEBS) but the effect is cell cycle phase-specific. Furthermore, the disparity between the affinity for AEBS (0.8-3.3 nM) and the concentration of drug needed for oestrogen-irreversible growth inhibition (greater than or equal to 2.5 microM) argue against a central role for AEBS in mediating this effect. The observation that triphenylethylene antioestrogens are calmodulin antagonists may provide some insight into potential mechanisms for this oestrogen-irreversible effect. Indeed, in identical experiments two phenothiazine calmodulin antagonists inhibited MCF 7 cell proliferation at concentrations greater than or equal to 2.5 x 10(-6) M. Growth inhibition following administration of fluphenazine, perphenazine and triphenylethylene antioestrogens was accompanied by qualitatively similar changes in the cell cycle kinetic parameters, i.e. accumulation in G1 phase at the expense of S phase cells. These data suggest triphenylethylene antagonism of calmodulin activated cellular processes as a potential mechanism for the oestrogen-irreversible effects of the nonsteroidal antioestrogens.  相似文献   

17.
《Autophagy》2013,9(7):1066-1067
Tamoxifen (Tx) interacts with high affinity to the microsomal antiestrogen binding site (AEBS) which is a hetero-oligomeric complex involved in cholesterol metabolism. We established that Tx and other AEBS ligands induce breast cancer cell differentiation, apoptosis and autophagy through the induction of sterol accumulation. We determined that cell death is sterol- and ROS-dependent and is prevented by the antioxidant vitamin E. Macroautophagy is characterized by the accumulation of autophagic vacuoles, an increase in the expression of Beclin 1 and the stimulation of autophagic flux. We established that macroautophagy is sterol-dependent and is associated with cell survival rather than cytotoxicity, since blockage of macroautophagy sensitizes cells to AEBS ligands. These results show that the accumulation of sterols by AEBS ligands in MCF-7 cells induces both apoptosis and macroautophagy. Collectively, these data support a therapeutic potential for selective AEBS ligands in breast cancer management and reveal a mechanism that explains the induction of autophagy in MCF-7 cells by Tx and other selective estrogen receptor modulators. Moreover these data give pharmacological clues to improve the apoptotic efficacy of AEBS ligands.  相似文献   

18.
Estrogen receptor (ER) from chicken liver and calf uterus were used to study the capacity and the characteristics of the receptor binding sites (acceptor sites) in chicken target cell nuclei. Binding studies were performed at a physiological salt concentration of 0.15 M KCl. Binding of liver ER to liver nuclei was temperature-dependent, showing a 9-fold increase between 0 and 28 degrees C. The maximal number of acceptor sites measured in this cell-free system (280 sites/nucleus) was considerably lower than measured in nuclei after in vivo administration of estrogen (820 sites/nucleus). Moreover incubation of nuclei with the liver ER preparation resulted in a substantial breakdown of nuclear DNA, making this ER less suitable for DNA binding studies. The temperature-activated calf uterine receptor bound to liver nuclei at 0 degrees C, at which temperature no DNA degradation was measured. To all chicken cell nuclei tested, the receptor bound with a high affinity (Kd = 0.4-1.0 nM). Nuclear binding displayed tissue specificity: oviduct greater than heart, liver greater than spleen greater than erythrocytes and was salt dependent. Calf uterine ER binding in liver nuclei ranged from 3000-6000 acceptor sites per nucleus when assayed under conditions of a constant protein or a constant DNA concentration. Nuclei isolated from estrogen-treated cockerels bound a 2-fold lower number of calf uterine ER complexes when compared to control nuclei. Incubation of nuclei with a fixed concentration of [3H]ER from liver and increasing concentrations of uterine non-radioactive-ER also resulted in a reduced binding of the liver receptor. Both types of experiments suggest that liver and uterine ER compete for a common nuclear acceptor site. Our data demonstrate that the ER from calf uterus is very useful as a probe to examine the nature of the acceptor sites in heterologous chicken target cell nuclei. The assay system functions at 0 degrees C, a temperature at which no DNA degradation occurs.  相似文献   

19.
Characterization of angiotensin II receptor subtypes in rat liver   总被引:4,自引:0,他引:4  
Radioligand binding studies identified two classes of 125I-angiotensin II-binding sites in rat liver membranes. High affinity binding sites (Kd = 0.35 +/- 0.13 nM, N = 372 +/- 69 fmol/mg of protein) were inactivated by dithiothreitol (0.1-10 mM) without any apparent change in low affinity binding sites (Kd = 3.1 +/- 0.8 nM, N = 658 +/- 112 fmol/mg of protein). Dithiothreitol inactivation was readily reversible but could be made permanent by alkylation of membrane proteins with iodoacetamide. Angiotensin II stimulation of glycogen phosphorylase in isolated rat hepatocytes (maximal stimulation 780%, EC50 = 0.4 nM) was completely inhibited by 10 mM dithiothreitol, a concentration which also abolished high affinity site binding; phosphorylase stimulation by glucagon and norepinephrine under these conditions was unaltered. Angiotensin II inhibition of glucagon-stimulated adenylate cyclase activity in hepatocytes required higher angiotensin II concentrations (EC50 = 3 nM) than phosphorylase stimulation and was not affected by dithiothreitol. Fractional occupancy of high affinity binding sites by 125I-angiotensin II correlated closely with angiotensin II-mediated phosphorylase stimulation, whereas occupancy of low affinity sites paralleled inhibition of adenylate cyclase activity. These data indicate that the physiologic effects of angiotensin II in rat liver are mediated by two distinct receptors, apparently not interconvertible, and provide the first evidence for angiotensin II receptor subtypes with differing biochemical features and mechanisms of action.  相似文献   

20.

Introduction

Oxidative stress plays a role in the pathogenesis of rheumatoid arthritis (RA). Anthocyanin is a plant antioxidant. We investigated the therapeutic effects of anthocyanin extracted from black soybean seed coats (AEBS) in a murine model of collagen-induced arthritis (CIA) and human peripheral blood mononuclear cells (PBMCs) and explored possible mechanisms by which AEBS might exert anti-arthritic effects.

Material and Methods

CIA was induced in DBA/1J mice. Cytokine levels were measured via enzyme-linked immunosorbent assays. Joints were assessed in terms of arthritis incidence, clinical arthritis scores, and histological features. The extent of oxidative stress in affected joints was determined by measuring the levels of nitrotyrosine and inducible nitric oxide synthase. NF-κB activity was assayed by measuring the ratio of phosphorylated IκB to total IκB via Western blotting. Th17 cells were stained with antibodies against CD4, IL-17, and STAT3. Osteoclast formation was assessed via TRAP staining and measurement of osteoclast-specific mRNA levels.

Results

In the CIA model, AEBS decreased the incidence of arthritis, histological inflammation, cartilage scores, and oxidative stress. AEBS reduced the levels of proinflammatory cytokines in affected joints of CIA mice and suppressed NF-κB signaling. AEBS decreased Th17 cell numbers in spleen of CIA mice. Additionally, AEBS repressed differentiation of Th17 cells and expression of Th17-associated genes in vitro, in both splenocytes of naïve DBA/1J mice and human PBMCs. In vitro, the numbers of both human and mouse tartrate-resistant acid phosphatase+ (TRAP) multinucleated cells fell, in a dose-dependent manner, upon addition of AEBS.

Conclusions

The anti-arthritic effects of AEBS were associated with decreases in Th17 cell numbers, and the levels of proinflammatory cytokines synthesized by such cells, mediated via suppression of NF-κB signaling. Additionally, AEBS suppressed osteoclastogenesis and reduced oxidative stress levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号