首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abortive ligation during base excision repair (BER) leads to blocked repair intermediates containing a 5′-adenylated-deoxyribose phosphate (5′-AMP-dRP) group. Aprataxin (APTX) is able to remove the AMP group allowing repair to proceed. Earlier results had indicated that purified DNA polymerase β (pol β) removes the entire 5′-AMP-dRP group through its lyase activity and flap endonuclease 1 (FEN1) excises the 5′-AMP-dRP group along with one or two nucleotides. Here, using cell extracts from APTX-deficient cell lines, human Ataxia with Oculomotor Apraxia Type 1 (AOA1) and DT40 chicken B cell, we found that pol β and FEN1 enzymatic activities were prominent and strong enough to complement APTX deficiency. In addition, pol β, APTX and FEN1 coordinate with each other in processing of the 5′-adenylated dRP-containing BER intermediate. Finally, other DNA polymerases and a repair factor with dRP lyase activity (pol λ, pol ι, pol θ and Ku70) were found to remove the 5′-adenylated-dRP group from the BER intermediate. However, the activities of these enzymes were weak compared with those of pol β and FEN1.  相似文献   

2.
3.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

4.
Oxidized abasic sites are a major form of DNA damage induced by free radical attack and deoxyribose oxidation. 2-Deoxyribonolactone (dL) is a C1'-oxidized abasic site implicated in DNA strand breakage, mutagenesis, and formation of covalent DNA-protein cross-links (DPCs) with repair enzymes such as DNA polymerase beta (polbeta). We show here that mammalian cell-free extracts incubated with Ape1-incised dL substrates under non-repair conditions give rise to DPCs, with a major species dependent on the presence of polbeta. DPC formation was much less under repair than non-repair conditions, with extracts of either polbeta-proficient or -deficient cells. Partial base excision DNA repair (BER) reconstituted with purified enzymes demonstrated that Flap endonuclease 1 (FEN1) efficiently excises a displaced oligonucleotide containing a 5'-terminal dL residue, as would be produced during long-patch (multinucleotide) BER. Simultaneous monitoring of dL repair and dL-mediated DPC formation demonstrated that removal of the dL residue through the combined action of strand-displacement DNA synthesis by polbeta and excision by FEN1 markedly diminished DPC formation with the polymerase. Analysis of the patch size distribution associated with DNA repair synthesis in cell-free extracts showed that the processing of dL residues is associated with the synthesis of >or=2 nucleotides, compared with predominantly single nucleotide replacement for regular abasic sites. Our observations reveal a cellular repair process for dL lesions that avoids formation of DPCs that would threaten the integrity of DNA and perhaps cell viability.  相似文献   

5.
Oxidative base damage to DNA: specificity of base excision repair enzymes   总被引:9,自引:0,他引:9  
Base excision repair (BER) is likely to be the main mechanism involved in the enzymatic restoration of oxidative base lesions within the DNA of both prokaryotic and eukaryotic cells. Emphasis was placed in early studies on the determination of the ability of several bacterial DNA N-glycosylases, including Escherichia coli endonuclease III (endo III) and formamidopyrimidine DNA N-glycosylase (Fpg), to recognize and excise several oxidized pyrimidine and purine bases. More recently, the availability of related DNA repair enzymes from yeast and human has provided new insights into the enzymatic removal of several.OH-mediated modified DNA bases. However, it should be noted that most of the earlier studies have involved globally modified DNA as the substrates. This explains, at least partly, why there is a paucity of accurate kinetic data on the excision rate of most of the modified bases. Interestingly, several oxidized pyrimidine and purine nucleosides have been recently inserted into defined sequence oligonucleotides. The use of the latter substrates, together with overexpressed DNA N-glycosylases, allows detailed studies on the efficiency of the enzymatic release of the modified bases. This was facilitated by the development of accurate chromatographic and mass spectrometric methods aimed at measuring oxidized bases and nucleosides. As one of the main conclusions, it appears that the specificity of both endo III and Fpg proteins is much broader than expected a few years ago.  相似文献   

6.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

7.
Two enzymes of base excision repair (BER), uracil DNA glycosylase (UDG) and DNA polymerase beta (beta pol), from HeLa cells co-eluted from Superose 12 FPLC columns. The UDG was completely displaced from 150-180-kDa fractions to 30- 70-kDa fractions by brief treatment with 0.5 N NaCl, pH 3.0, as expected when protein-protein associations are disrupted, but beta pol was not displaced by this treatment. UDG was not essential to the presence of beta pol in the 150-180-kDa enzyme complex. beta pol and UDG apparently reside in separate but co-eluting structures. Immunoaffinity chromatography showed that the association of UDG and beta pol was accounted for by attachment in common to DNA and that the association was abolished by eliminating DNA. Evidence for base excision repairosomes containing UDG and beta pol in protein-protein assemblies was not found. However, UDG and human AP endonuclease (HAP1) were associated with HSP70 and HSP27, which are present in 150-180-kDa and 30-70-kDa proteins of cell sonicates. The association of HSPs with BER enzymes was confirmed by hydroxyl radical protein-protein footprinting and immunoaffinity tests. The association of HSPs and BER enzymes is a novel finding. HSP binding may account for the presence of BER enzymes in the two large size class fractions and HSPs may have functional roles in BER.  相似文献   

8.
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.  相似文献   

9.
10.
Human cellular DNA is under constant attack from both endogenous and exogenous mutagens, and consequently the base excision repair (BER) pathway plays a vital role in repairing damaged DNA bases, sites of base loss (apurinic/apyrimidinic sites) and DNA single strand breaks of varying complexity. BER thus maintains genome stability, and prevents the development of human diseases, such as premature aging, neurodegenerative diseases and cancer. Indeed, there is accumulating evidence that misregulation of BER protein levels is observed in cells and tissues from patients with these diseases, and that post-translational modifications, particularly ubiquitylation, perform a key role in controlling BER protein stability. This review will summarise the presently available data on ubiquitylation of some of the key BER proteins, and the functional consequences of this modification.  相似文献   

11.
Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit‐ and antioxidant‐rich plant‐based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant‐rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant‐rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (?39%, p < 0.01) were observed in the group consuming a wide variety of plant products. Reduced NER was also observed in the kiwifruit group (?38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Inorganic arsenic is a strong, widespread human carcinogen. How exactly inorganic arsenic exerts carcinogenicity in humans is as yet unclear, but it is thought to be closely related to its metabolism. At exposure-relevant concentrations arsenic is neither directly DNA reactive nor mutagenic. Thus, more likely epigenetic and indirect genotoxic effects, among others a modulation of the cellular DNA damage response and DNA repair, are important molecular mechanisms contributing to its carcinogenicity. In the present study, we investigated the impact of arsenic on several base excision repair (BER) key players in cultured human lung cells. For the first time gene expression, protein level and in case of human 8-oxoguanine DNA glycosylase 1 (hOGG1) protein function was examined in one study, comparing inorganic arsenite and its trivalent and pentavalent mono- and dimethylated metabolites, also taking into account their cellular bioavailability. Our data clearly show that arsenite and its metabolites can affect several cellular endpoints related to DNA repair. Thus, cellular OGG activity was most sensitively affected by dimethylarsinic acid (DMA(V)), DNA ligase IIIα (LIGIIIα) protein level by arsenite and X-ray cross complementing protein 1 (XRCC1 protein) content by monomethylarsonic acid (MMA(V)), with significant effects starting at ≥3.2μM cellular arsenic. With respect to MMA(V), to our knowledge these effects are the most sensitive endpoints, related to DNA damage response, that have been identified so far. In contrast to earlier nucleotide excision repair related studies, the trivalent methylated metabolites exerted strong effects on the investigated BER key players only at cytotoxic concentrations. In summary, our data point out that after mixed arsenic species exposure, a realistic scenario after oral inorganic arsenic intake in humans, DNA repair might be affected by different mechanisms and therefore very effectively, which might facilitate the carcinogenic process of inorganic arsenic.  相似文献   

13.
14.
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.  相似文献   

15.
Sobol RW 《Molecular cell》2008,29(4):413-415
In this issue of Molecular Cell, Parsons et al. (2008) report that the E3 ubiquitin ligase CHIP regulates the stability of the base excision repair (BER) proteins XRCC1 and DNA Pol beta, adding a new level of regulation for BER.  相似文献   

16.
Base damage or loss occurs at high frequency in the cells (almost 10(4) bases are damaged and hydrolysed per cell per day). DNA repair is fundamental to maintain genomic integrity. Base excision repair (BER) is the main mechanism by which cells correct various types of damaged DNA bases generated either by endogenous or exogenous factors. The widely accepted model for BER mechanism involves five sequential reactions: (i) base removal; (ii) incision of the resulting abasic site; (iii) processing of the generated termini at the strand break; (iv) DNA synthesis, and (v) ligation. In this review, we will briefly summarise the biochemistry of each BER step and will concentrate on the biological relevance of BER as inferred from in vitro and in vivo studies. This information will be the basis for speculation on the potential role of malfunction of BER in human pathology.  相似文献   

17.
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.  相似文献   

18.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. MPG activity and other DNA glycosylases do not have an absolute requirement for a cofactor. In contrast, all downstream activities of major base excision repair proteins, such as apurinic/apyrimidinic endonuclease, DNA polymerase beta, and ligases, require Mg(2+). Here we have demonstrated that Mg(2+) can be significantly inhibitory toward MPG activity depending on its concentration but independent of substrate type. The pre-steady-state kinetics suggests that Mg(2+) at high but physiologic concentrations decreases the amount of active enzyme concentrations. Steady-state inhibition kinetics showed that Mg(2+) affected K(m), but not V(max), and the inhibition could be reversed by EDTA but not by DNA. At low concentration, Mg(2+) stimulated the enzyme activity only with hypoxanthine but not ethenoadenine. Real-time binding experiments using surface plasmon resonance spectroscopy showed that the pronounced inhibition of activity was due to inhibition in substrate binding. Nonetheless, the glycosidic bond cleavage step was not affected. These results altogether suggest that Mg(2+) inhibits MPG activity by abrogating substrate binding. Because Mg(2+) is an absolute requirement for the downstream activities of the major base excision repair enzymes, it may act as a regulator for the base excision repair pathway for efficient and balanced repair of damaged bases, which are often less toxic and/or mutagenic than their subsequent repair product intermediates.  相似文献   

19.
8-Oxo-7,8-dihydroguanine (OG) is susceptible to further oxidation in vitro to form two secondary oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). Previous work from this laboratory has shown that OG, Gh, and Sp are recognized and excised from duplex DNA substrates by the Escherichia coli DNA repair enzyme Fpg. In this report, we extend these studies to the functionally related eukaryotic OG glycosylases (OGG) from yeast and humans: yOGG1, yOGG2, and hOGG1. The hOGG1 enzyme was active only toward the removal of 8-oxoguanine, exhibiting a 1000-fold faster rate of removal of 8-oxoguanine from OG.C-containing duplexes relative to their OG.A counterparts. Duplexes containing Gh or Sp opposite any of the four natural bases were not substrates for the hOGG1 enzyme. In contrast, both yOGG1 and yOGG2 enzymes removed Gh and Sp in a relatively efficient manner from an 18 bp duplex. No significant difference was observed in the rate of reaction of Gh- and Sp-containing duplexes with yOGG1. However, yOGG2 removed Sp at a faster rate than Gh. Both yOGG enzymes exhibit a negligible dependence on the base opposite the lesion, suggesting that the activity of these enzymes may be promutagenic. Surprisingly, in the 18 bp sequence context, both yOGG enzymes did not exhibit OG removal activity. However, both removed OG in a 30 bp duplex with a different sequence surrounding the OG. The wide range of repair efficiencies observed by these enzymes with different substrates in vitro suggests that this could greatly affect the mutagenicity of these lesions in vivo. Indeed, the greater efficiency of the yOGG proteins for removal of the further oxidized products, Gh and Sp, over their 8-oxoguanine parent, suggests that these lesions may be the preferred substrates in vivo.  相似文献   

20.
Neurodegeneration is a growing public health concern because of the rapid increase in median and maximum life expectancy in the developed world. Mitochondrial dysfunction seems to play a critical role in neurodegeneration, likely owing to the high energy demand of the central nervous system and its sole reliance on oxidative metabolism for energy production. Loss of mitochondrial function has been clearly demonstrated in several neuropathologies, most notably those associated with age, like Alzheimer's, Parkinson's and Huntington's diseases. Among the common features observed in such conditions is the accumulation of oxidative DNA damage, in particular in the mitochondrial DNA, suggesting that mitochondrial DNA instability may play a causative role in the development of these diseases. In this review we examine the evidence for the accumulation of oxidative DNA damage in mitochondria, and its relationship with loss of mitochondrial function and cell death in neural tissues. Oxidative DNA damage is repaired mainly by the base excision repair pathway. Thus, we review the molecular events and enzymes involved in base excision repair in mitochondria, and explore the possible role of alterations in mitochondrial base excision repair activities in premature aging and age-associated neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号