首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The role of postnatal pituitary-testicular activity in sexual maturation at puberty was studied in male rats. Rats were injected twice daily with a potent gonadotropin-releasing hormone antagonist (N-Ac-4-Cl-D-Phe1, 4-Cl-D-Phe2, D-Trp3, D-Phe6, D-Ala10-NH2-GnRH) (GnRH-Ant.), 2 mg/kg, on Days 1-15 of life, and killed on Day 48, 56 or 90 of life. The treatment delayed the onset of puberty (monitored by balano-preputial separation) by 8 days (from the age of 48 to 56 days). The weights of testes, seminal vesicles and ventral prostates were reduced by 50-60% on days 48 and 56 of life, but only the testis weights remained suppressed by Day 90. Levels of serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH), but not those of prolactin (Prl), were elevated 2-to-4-fold in the treated animals at the three ages studied. Serum and testicular testosterone (T) and the receptors for LH and Prl were suppressed in the peripubertal animals (48 and 56 days), but serum T was elevated and the receptor levels were normal in the 90-day group. The testicular FSH receptors were 50% suppressed at all ages studied. Only minor changes were observed in testicular histology when studied at 48 and 56 days. The 85-day-old animals treated with GnRH-Ant. were infertile when mated with females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effectiveness of androgens in suppressing gonadotropin secretion declines with time following orchidectomy; however, the mechanism for this acquired resistance to androgen action is unknown. The role of the pituitary was studied by use of perifused rat pituitary cells and cells in monolayer culture. Pituitary cells from 7-wk-old intact male rats and rats that had been castrated 2 wk previously were treated with 10 nM testosterone (T) for 24 h; cells were then packed into perifusion chambers and stimulated with 2.5 nM GnRH for 2 min every hour for 8 h during which time T treatment was continued. T suppressed GnRH-stimulated LH secretion and LH pulse amplitude equally in both groups to approximately 60% of control values. Interpulse LH secretion was unchanged by T in either group. GnRH-stimulated FSH release was suppressed more (p less than 0.05) by T with cells from castrated rats than with cells from intact rats (76 +/- 4% vs. 90 +/- 2% of control; mean +/- SEM). By contrast, the action of T to increase interpulse basal FSH secretion was less (p less than 0.05) with cells from castrated rats (115 +/- 10% of control) than with cells from intact rats (146 +/- 6% of control). T treatment for 72 h also increased basal FSH secretion by pituitary cells in monolayer culture to a lesser extent with cells from castrated rats than with cells from intact rats (151 +/- 14% vs. 191 +/- 16% of control, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

5.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

7.
8.
The plasma LH concentration is believed to be reasonably steady in normal male rats. We found that LH is released in a regular pulsatile fashion. The overall mean concentration of plasma LH in normal male rats was 46.6 +/- 4.4 (mean +/- SEM) ng/ml. The normal male rats showed periodic LH pulses: the mean pulse amplitude was 144.4 +/- 25.5 ng/ml and the inter-peak interval was 22.5 +/- 2.0 min. Each pulse lasted 9.7 +/- 0.8 min. When LH-RH (1 microgram/kg) was injected as a bolus, the peak concentration was attained in 10-30 min reaching a peak concentration of 279.4 +/- 39.6 ng/ml. Distinct pulsatile bursts of plasma LH were discernible during the period of elevated plasma LH concentration. When a higher dose of LH-RH (5 micrograms/kg) was administered, the LH concentration slowly increased to a peak concentration of 400.2 +/- 38.7 ng/ml in 20-40 min. The pulsatile nature of the LH concentration was recognizable with distinct bursts. We have observed that: (a) normal male rats release LH in a pulsatile fashion with an approximate 20-min inter-peak interval; (b) mean LH pulses last less than 10 min, and (c) the LH pulses are visible even with elevated LH and LH-RH concentrations in the general circulation.  相似文献   

9.
The objective of this study was to determine the effect of using a gonadotropin-releasing factor (GnRF) vaccine on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in plasma, the size of testicles, and the expression of boar taint in male pigs. Vaccinated pigs were compared with surgically castrated pigs and entire males. Pigs were randomly assigned to three treatment groups: surgically castrated during the first week of life (T01, n = 274), immunized twice during the fattening period with a GnRF vaccine, the first when 13 to 14 wk of age and the second when 20 to 21 wk of age (T02, n = 280), and entire males (T03, n = 56). From a subgroup of both T01 and T02 and from all pigs of group T03, blood samples were collected immediately before second vaccination (T02) and again before slaughter at either 24 to 25 or 26 to 27 wk of life to determine the plasma concentrations of LH and FSH. Testicles were removed after slaughter and their size was determined. Meat and fat samples from all pigs of T02 and T03 as well as 25% of the pigs of T01 were examined with the cold cooking and fat melting test. Immediately before the second vaccination (T02 only), LH and FSH concentrations were not significantly different between T02 and T03. However, LH and FSH concentrations were significantly higher in T01 compared with T02 and T03. Before the first slaughter date, LH and FSH concentrations were significantly lower in T02 than in T03. Testicle size was significantly lower in T02 compared with that in T03. In T02, 98% (235 of 239) of the samples were rated negative for boar taint by the cooking test, whereas in T03, 94% (48 of 51) were rated positive. In the fat melting test, 97% of T02 were rated negative and 3% (7 pigs) were rated positive, including the pigs tested positive in the cold cooking test. In T03, 94% were rated positive. All pigs (7 of 239) in T02 that were positive for boar taint in the cooking or melting test and that were tested had androstenone and skatole concentrations in backfat below threshold levels of 1 μg/g and 0.2 μg/g, respectively.  相似文献   

10.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Striped bass are seasonal breeding fish, spawning once a year during the spring. All 3-yr-old males are sexually mature; however, 60-64% of the fish mature earlier as 1- or 2-yr-old animals. The endocrine basis underlying early maturity in 2-yr-old males was studied at the molecular level by monitoring changes in pituitary beta FSH and beta LH mRNA levels by ribonuclease protection assay, and correlating these changes to stages of testicular development. In maturing males, the mRNA levels of beta FSH were elevated during early spermatogenesis, whereas beta LH mRNA levels peaked during spermiation. The appearance of spermatozoa in the testis was associated with a decrease in beta FSH mRNA and a rise in beta LH mRNA abundance. Immature males had lower levels of beta LH mRNA than maturing males, but there were no differences in beta FSH mRNA levels between immature and maturing males. The regulation of gonadotropin gene expression in 2-yr-old males was studied by the chronic administration of GnRH analogue (GnRHa) and testosterone (T), with or without pimozide (P) supplementation. In immature males, the combination of T and GnRHa stimulated a three- to fivefold increase in beta FSH and beta LH mRNA levels, but the same treatment had no effect on gonadotropin gene expression in maturing males. In addition, the coadministration of P to immature males suppressed the stimulatory effect of GnRHa and T on beta FSH and beta LH mRNA levels, suggesting that dopamine may have a novel role in regulating gonadotropin gene expression.  相似文献   

12.
Selective elevations of plasma follicle-stimulating hormone (FSH) levels are characteristic of some physiological conditions, such as the early stages of human puberty, and in some disorders of testicular function, such as idiopathic oligospermia. We tested the hypotheses that a slow gonadotropin-releasing hormone (GnRH) pulse frequency favors a selective elevation of plasma FSH and that this is influenced by the circulating steroidal milieu. We administered exogenous GnRH at frequencies of once every 90 min (q 90 min) and once every 240 min (q 240 min) to castrated prepubertal male monkeys who had received either empty (sham) or testosterone (T)-filled Silastic capsules at the time of castration. At the end of each experimental frequency period, mean plasma levels of luteinizing hormone (LH) and FSH were measured. Plasma T levels were also measured. Animals with T implants had plasma levels of this hormone that were in the adult range (approximately equal to 8 ng/ml), whereas those with sham implants had plasma T levels in the prepubertal range (less than or equal to 4 ng/ml). In animals with sham implants, mean plasma FSH levels were markedly elevated at the slower GnRH pulse frequency (39.5 +/- 3.6 ng/ml following GnRH q 240 min compared with 23.7 +/- 2.8 ng/ml following GnRH q 90 min). This selective FSH elevation was not apparent in animals with T implants. Mean plasma LH levels were similar (approximately equal to 8 micrograms/ml) at the two GnRH pulse frequencies, in both T-treated and sham-implanted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
During aging, the male Japanese quail exhibits a loss of fertility, increased morphological abnormalities in the testes, and a higher incidence of Sertoli cell tumors. Although there is a coincident loss of reproductive behavior, plasma androgen levels remain high until testicular regression occurs in association with senescence. The purpose of this study was to compare mean specific binding of chicken luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as a measure of testicular receptors during identified stages during aging. Males were categorized according to age (young = 9 months, middle aged = 24 months, or old = 36+ months) and sexual behavior (active or inactive). Testicular samples were collected immediately after perfusion with 4% paraformaldehyde from the following groups: young active (n = 8), young photoregressed (n = 5), young photoregressed plus testosterone implant (n = 4), middle-aged active (n = 8), middle-aged inactive (n = 4), old inactive (n = 5), and old inactive plus testosterone implant (n = 6). A crude plasma membrane fraction was prepared from the testes of each bird and an aliquot deriving from 10 mg of testicular tissue was used for binding assay. Specific binding of labeled LH or FSH was expressed as percentage of total radioactive hormone. Results showed significant (P < 0.05) age-related decreases in both FSH and LH receptor numbers. The highest FSH binding was found in young and middle-aged active males, with low binding in old inactive males. Testicular LH binding decreased during aging, with a sharp decrease in middle-aged males, which was similar to old males. Testosterone implants weakly stimulated FSH and LH binding in old males. Both LH and FSH binding decreased in photoregressed young males. However, testosterone implants stimulated increased LH binding, but did not affect FSH binding in young photoregressed males. These results provide evidence for separate regulation of testicular LH and FSH receptors, with testosterone stimulation of LH receptor, but not FSH receptor number in young males. However, during aging there appears to be a loss of this response, potentially because of the reduced efficacy of testosterone stimulation, thereby implying a diminished capacity for response with aging.  相似文献   

14.
Immature female rats were infused s.c. continuously over a 60-h period with a partially purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH activity 4.2 x NIH-FSH-S1 and luteinizing hormone (LH) activity 0.022 x NIH-LH-S1. High rates of superovulation were observed in rats receiving 1 U FSH/day, with 69 +/- 11 oocytes/rat recovered as cumulus-enclosed oocytes from oviducts on Day 1 (equivalent to the day of estrus). Addition of LH to the FSH, at dosages equivalent to 2.5-100 micrograms/day NIH-LH-S1 equivalents (2.5-100 mU) resulted in a dose-related inhibition of superovulation, reaching a nadir of 15 +/- 7 oocytes recovered from rats receiving 50 mU LH/day together with 1 U FSH/day. At the two highest LH doses, 50 and 100 mU/day, ovulation was advanced so that 12 +/- 3 and 15 +/- 4 oocytes, respectively, were recovered from oviducts of these rats flushed on the morning of Day 0, compared to none in rats infused with FSH alone. Ovarian steroid concentrations (ng/mg) observed on the morning of Day 0 in rats infused with FSH alone were progesterone, 0.50 +/- 0.13; testosterone, 0.16 +/- 0.08; androstenedione, 0.06; and estradiol, 0.23 +/- 0.05. On the morning of Day 1, ovarian progesterone concentrations in rats infused with FSH alone had risen to 3.30 +/- 0.33 ng/mg, whereas concentrations of testosterone, androstenedione, and estradiol, had fallen to essentially undetectable levels. Addition of LH to the FSH infusion resulted in dose-related increases, on Day 0, of all four steroids up to a dosage of 25 mU LH/day. At higher LH dosages, Day 0 ovarian concentrations of androgens and estradiol fell markedly, while progesterone concentrations continued to increase. Histological examination of ovaries revealed increases in the extent of luteinization of granulosa cells in follicles with retained oocytes on both Days 0 and 1 in rats infused with 25 and 50 mU LH/day together with 1 U FSH/day, compared to those observed in rats receiving FSH alone. These findings indicate that the elevated progesterone levels on Day 0 and inhibition of ovulation observed at these LH doses were due to premature luteinization of follicles, thus preventing ovulation. At lower LH doses, no sign (based on histologic or steroidogenic criteria) of premature luteinization was evident, suggesting that the decreased superovulation in these rats was due to decreased follicular maturation and/or increased atresia rather than to luteinization of follicles without ovulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
17.
The influence of GnRH pulse frequency on LH subunit mRNA concentrations was examined in castrate, testosterone-replaced male rats. GnRH pulses (25 ng/pulse) or saline to controls, were given via a carotid cannula at intervals of 7.5-240 min for 48 h. alpha and LH beta mRNA concentrations were 109 +/- 23 and 30 +/- 5 pg cDNA bound/100 micrograms pituitary DNA, respectively, in saline controls. GnRH pulse intervals of 15, 30, and 60 min resulted in elevated alpha and LH beta mRNAs (P less than 0.01) and maximum responses (4-fold, alpha; 3-fold, LH beta) were seen after the 30-min pulses. Acute LH release to the last GnRH pulse was seen after the 15-, 30-, and 60-min pulse intervals. In contrast, LH subunit mRNAs were not increased and acute LH release was markedly impaired after the rapid (7.5 min) or slower (120 and 240 min) pulse intervals. Equalization of total GnRH dose/48 h using the 7.5- and 240-min intervals did not increase LH subunit mRNAs to levels produced by the optimal 30-min interval. These data indicate that the frequency of the pulsatile GnRH stimulus regulates expression of alpha and LH beta mRNAs in male rats. Further, GnRH pulse frequencies that increase subunit mRNA concentrations are associated with continuing LH responsiveness to GnRH.  相似文献   

18.
Both testosterone (T) and gonadotropin-releasing hormone (GnRH)-antagonist (GnRH-A) when given alone lower serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact and castrated rats. However, when graded doses of testosterone enanthate (T.E.) were given to GnRH-A-treated intact male rats, a paradoxical dose-dependent increase in serum FSH occurred; whereas serum LH remained suppressed. This surprising finding led us to ask whether the paradoxical increase in serum FSH in GnRH-A-suppressed animals was a direct stimulatory effect of T on the hypothalamic-pituitary axis or the result of a T effect on a testicular regulator of FSH. To test these hypotheses, we treated adult male castrated rats with GnRH-A and graded doses of T.E. In both intact and castrated rats, serum LH remained undetectable in GnRH-A-treated rats with or without T.E. However, addition of T.E. to GnRH-A led to a dose-dependent increase in serum FSH in castrated animals as well, thus pointing against mediation by a selective testicular regulator of FSH. These data provide evidence that pituitary LH and FSH responses may be differentially regulated under certain conditions. When the action of GnRH is blocked (such as in GnRH-A-treated animals), T directly and selectively increases pituitary FSH secretion.  相似文献   

19.
The onset of pubertal testicular growth (Po) occurred in 12 out of 20 male chimpanzees surveyed monthly for at least 3.7 yr. When animals were synchronized according to Po, the mean weight gain was found to be higher before than after Po, and testicular volume started to rise immediately after Po. The earlier significant hormonal events were a rapid rise in LH and a slight testosterone increase occurring 6 mo before Po. Thereafter, the levels of LH remained elevated while testosterone continued to rise in parallel with the testicular volume. FSH levels increased suddenly at Po, 6 mo after the LH increase. FSH remained elevated for only 9 mo, then dropped to prepubertal levels. The dissociation between onsets of pubertal increases in LH and FSH secretions suggests that the complete reawakening of the hypothalamic-pituitary unit lasts several months. The secondary drop of FSH, occurring at the time of spermarche, may be induced by factor(s) secreted by the testis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号