首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

2.
We investigate the structure of aggregates formed due to DNA interaction with saturated neutral phosphatidylcholines [dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine] in presence of Ca2+ and Mg2+ cations using simultaneous synchrotron small- and wide-angle X-ray diffractions. For DPPC:DNA = 3:1 mol/base and in the range of 1–50 mM Ca2+, the diffractograms show structural heterogeneity of aggregates. We observe the coexistence of two lamellar phases in aggregates prepared at 1 mM Ca2+: Lx phase with the DNA strands (of unknown organization) intercalated in water layers between adjacent lipid bilayers and LDPPC phase of DPPC bilayers without any divalent cations and DNA strands. Aggregates prepared in the range 2–50 mM Ca2+ show a condensed gel lamellar phase Lgc with the lipid bilayer periodicity d ≈ 8.0 nm, and the DNA–DNA interhelical distance d DNA ≈ 5.1 nm. The increase of temperature induces the decrease in the intensity and the increase in the width of the DNA related peak. In the fluid state, the condensed lamellar phase Lαc gradually converts into Lx phase. The aggregates do not exhibit rippled Pβ phase. The thermal behaviour of aggregates was investigated in the range 20–80°C. Applying heating–cooling cycles, the aggregates converted into energetically more favourable structure: a condensed lamellar phase Lc (or Lx) is preserved or we observe lateral segregation of the DNA strands and metal cations (Lx phase) in coexistence with LPC phase of pure phospholipids. Dedicated to Prof. Dr Klaus Arnold on the occasion of his 65th birthday.  相似文献   

3.
In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K(+), Mg(2+), and Ca(2+) ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca(2+) ions with lipids is significantly stronger than that of K(+) and Mg(2+) ions, regardless of the composition of the lipid bilayer. The binding of Ca(2+) ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K(+)- and Mg(2+)-containing systems. The Ca(2+) ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength-most notably for Ca(2+). The formation of cation-lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca(2+)-phospholipid clusters across apposed lipid bilayers can work as a "cation glue" to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.  相似文献   

4.
The structure of aggregates formed by interaction of DNA with unilamellar dilauroylphosphatidylcholine (DLPC) vesicles (DNA:DLPC=1:1 base/mol) in the presence of gemini surfactant butane-1,4-diyl-bis(dodecyldimethylammonium bromide) (C12GS) was investigated using synchrotron small angle X-ray diffraction. In the concentration range C12GS+:DLPC< or =1 mol/mol, a condensed lamellar Lalphac phase was found with a repeat period of lipid bilayer stacking in the range d approximately 5.70-6.53 nm and the DNA interhelical distance d(DNA) approximately 3.52-3.99 nm, depending on the concentration of C12GS. At molar ratio C12GS+:DLPC> or =0.35:1, the diffractograms have shown the presence of a second lamellar phase with the repeat period d approximately 5.31 nm which slightly decreases with increasing concentration of C12GS+. The increasing fraction of this phase in the aggregates with increasing concentration of C12GS supports the association of this phase with microscopic domains enriched by surfactant molecules. The temperature behaviour of aggregates was investigated in the range 25-60 degrees C and the transversal thermal expansivities of the observed phases were determined.  相似文献   

5.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of beta-amyloid (Abeta) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Abeta. As a model, we have examined the interaction of Abeta(1-42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Abeta to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Abeta and Abeta-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Abeta addition and is maintained for over 24 h. By contrast, Abeta is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Abeta on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Abeta activity in vivo.  相似文献   

6.
We report the microstructure and phase behavior of three ternary mixtures each containing a long-chain saturated glycosphingolipid, galactosylceramide (GalCer), and cholesterol at room temperature. The unsaturation level of the fluid-phase component was varied by lipid choice, i.e., saturated 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), singly unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or doubly unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). GalCer was used because of its biological significance, for example, as a ligand in the sexual transmission of HIV and stimulator of natural killer T-cells. Supported lipid bilayers of the ternary mixtures were imaged by atomic force microscopy and GalCer-rich domains were characterized by area/perimeter ratios (A/P). GalCer domain phase transitions from solid (S) to liquid (L) phase were verified by domain behavior in giant unilamellar vesicles, which displayed two-dimensional microstructure similar to that of supported lipid bilayers. As cholesterol concentration was increased, we observed approximately 2.5, approximately 10, and approximately 20-fold decreases in GalCer domain A/P for bilayers in L-S phase coexistence containing DOPC, POPC, and DLPC, respectively. The transition to L-L phase coexistence occurred at approximately 10 mol % cholesterol for bilayers containing DOPC or POPC and was accompanied by maintenance of a constant A/P. L-L phase coexistence did not occur for bilayers containing DLPC. We systematically relate our results to the impact of chain unsaturation on the interaction of the fluid-phase lipid and cholesterol. Physiologically, these observations may give insight into the interplay of fatty acid chain unsaturation, sterol concentration, and lipid hydrophobic mismatch in membrane phenomena.  相似文献   

7.
It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2+), respectively.  相似文献   

8.
Solubilization of large unilamellar 1,2-dioleoylphosphatidylcholine (DOPC) vesicles by N-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was studied using turbidimetry. From turbidity data, the LDAO partition coefficient between the aqueous phase and DOPC bilayers was obtained. Using this partition coefficient, the LDAO:DOPC molar ratio in the bilayer was calculated and effects of LDAO on the bilayer stability, bilayer thickness and on the phosphohydrolase activity of sarcoplasmic reticulum Ca(2+) transporting ATPase (SERCA) reconstituted into DOPC were compared at the same LDAO:DOPC molar ratios in the bilayer. The sequence "bilayers in vesicles - bilayer fragments (flat mixed micelles) - tubular mixed micelles - globular mixed micelles" was suggested for the solubilization mechanism of DOPC vesicles from the combined turbidimetric and small-angle neutron scattering (SANS) results. The effective molecular packing parameter delta = 0.5, corresponding to the mixed bilayer - mixed tubular micelle transition, was calculated from fragmental DOPC and LDAO volumes at the molar ratio LDAO:DOPC = 2.00 in bilayers, in the middle of transition region observed earlier experimentally by small-angle neutron scattering (SANS). The bilayer thickness decrease induced by LDAO in DOPC observed by SANS did not result in the SERCA phosphohydrolase activity decrease and this indicates that some other factors compensated this bilayer effect of LDAO. The ATPase activity decrease at higher LDAO concentrations was caused by the bilayer deformation. This deformation resulted in the formation of non-bilayer aggregates in LDAO+DOPC system.  相似文献   

9.
Lamellar phases composed of fluid dioleoylphosphatidylcholine (DOPC) bilayers containing alkan-1-ols (CnOH, n = 8, 10, 14, 16, 18 is the number of carbon atoms) at CnOH : DOPC = 0.3 molar ratio and hydrated with heavy water at 20.2 ≥ D2O : DOPC ≥ 14.4 molar ratio were studied by neutron diffraction. The bilayer thickness d(L) and the bilayer surface area A(L) per DOPC at the bilayer-water interface were obtained from the lamellar repeat period d using molecular volumes of DOPC, CnOH and D2O, and the Luzatti's method. Both the d(L) and A(L) increase with the CnOH chain length n at CnOH : DOPC = 0.3 molar ratio: d(L) = (3.888 ± 0.066) + (0.016 ± 0.005)·n (in nm), A(L) = (0.6711 ± 0.0107) + (0.0012 ± 0.0008)·n (in nm2).  相似文献   

10.
X-ray diffraction studies have been made on the effects of cations upon the dipalmitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 A and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. The lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150-200 A comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys the lameellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phase. The high-angle reflections indicate that molecular arrangements in phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

11.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

12.
Ca2+ is known to induce the adhesion and collapse of phosphatidylserine (PS) bilayers into dehydrated multilamellar structures. The aim of this study was to examine how that interaction and the resultant structures might be modified by neutral lipid species. A combination of rapid mixing, x-ray diffraction, thin-layer chromatography, density gradient centrifugation, and freeze-fracture electron microscopy was used in conjunction with osmotic stress techniques to characterize the structures formed by the Ca(2+)-induced interaction of multilamellar liposomes and of large unilamellar vesicles. The results showed that dioleoylphosphatidylcholine and dioleoylphosphatidylethanolamine at concentrations of up to approximately 30 mol % are accommodated in a single dehydrated multilamellar structure. Similar results were obtained using mixed PS species isolated from bovine brain. Principally, the data indicate that neutral lipid is both dehydrated during the rapid collapse process of Ca(PS)2 formation and accommodated within this dehydrated structure. The large energies available on formation of the Ca(PS)2 bilayers contribute to the dehydration of neighboring neutral lipids that likely form continuous bilayers with them. Higher concentrations of these neutral lipids modify Ca(2+)-induced bilayer interactions, leading to progressively weaker interactions, larger bilayer separations, and in some cases separation into two structures; phosphatidylethanolamine species favoring nonbilayer structures tended to promote such separation at lower concentrations than bilayer lipids.  相似文献   

13.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of β-amyloid (Aβ) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Aβ. As a model, we have examined the interaction of Aβ(1−42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Aβ to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Aβ and Aβ-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Aβ addition and is maintained for over 24 h. By contrast, Aβ is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Aβ on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Aβ activity in vivo.  相似文献   

14.
Sphingomyelin (SM) is a main component of lipid rafts and characteristic of abundance of long and saturated acyl chains. Recently, we reported that fluorescence-labeled lipids including C16:0 and C18:0SMs retained membrane behaviors of inherent lipids. Here, we newly prepared fluorescent SMs with longer acyl chains, C22:0 and C24:1, for observing their partition and diffusion in SM/cholesterol (chol)/dioleoylphosphatidylcholine (DOPC) bilayers. Although fluorescent C24:1SM underwent a uniform distribution between ordered (Lo) and disordered (Ld) phases, other fluorescent SMs with saturated acyl chains were preferentially distributed in the Lo phase. Interestingly, when the acyl chains of fluorescent and membrane SMs are different, distribution of fluorescent SM to the Lo phase was reduced compared to when the acyl chains are the same. This tendency was also observed for C16:0SM/C22:0SM/chol/DOPC quaternary bilayers, where the minor SM was more excluded out of the Lo phase than the major SM. We also found that the coexistence of SMs induces SM efflux out of the Lo phase and simultaneous DOPC influx to the Lo phase, consequently reducing the difference in fluidity between the two phases. These results suggest that physicochemical properties of lipid rafts are regulated by the acyl chain heterogeneity of SMs.  相似文献   

15.
In this work we have investigated model lipid mixtures simulating a lipid component of oral stratum corneum (OSC). Neutron diffraction experiments on oriented samples have revealed that SM (bovine brain)/dipalmitoylphosphatidylethanolamine/dipalmitoylphosphatidylcholine (DPPE/DPPC) mixtures at molar ratios of 1/2/1 and 1/1/1 are one-phase membranes. The incorporation of low concentrations of ceramide 6 and cholesterol into SM/DPPC/DPPE bilayers does not result in a phase separation, affecting membrane hydration. The model OSC membrane composed of ceramide 6/cholesterol/fatty acids/cholesterol sulfate/SM (bovine brain)/DPPE/DPPC is characterized by coexistence of several lamellar phases, that behave differently during their hydration in water excess. The phase with lamellar repeat distance of about 45 Å is likely a ceramide-rich phase and shows a restricted swelling in water, while another phase with repeat distance of 50 Å swells very quickly on 15 Å and then disappears. Our results indicate that phospholipid-rich and ceramide-rich domains could possibly coexist in the intercellular space of oral epithelium.  相似文献   

16.
β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25–35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25–35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.  相似文献   

17.
J M East  A G Lee 《Biochemistry》1982,21(17):4144-4151
1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.  相似文献   

18.
Use of cyclodextrin for AFM monitoring of model raft formation   总被引:5,自引:0,他引:5       下载免费PDF全文
The lipid rafts membrane microdomains, enriched in sphingolipids and cholesterol, are implicated in numerous functions of biological membranes. Using atomic force microscopy, we have examined the effects of cholesterol-loaded methyl-beta-cyclodextrin (MbetaCD-Chl) addition to liquid disordered (l(d))-gel phase separated dioleoylphosphatidylcholine (DOPC)/sphingomyelin (SM) and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/SM supported bilayers. We observed that incubation with MbetaCD-Chl led to the disappearance of domains with the formation of a homogeneously flat bilayer, most likely in the liquid-ordered (l(o)) state. However, intermediate stages differed with the passage through the coexistence of l(o)-l(d) phases for DOPC/SM samples and of l(o)-gel phases for POPC/SM bilayers. Thus, gel phase SM domains surrounded by a l(o) matrix rich in cholesterol and POPC could be observed just before reaching the uniform l(o) state. This suggests that raft formation in biological membranes could occur not only via liquid-liquid but also via gel-liquid immiscibility. The data also demonstrate that MbetaCD-Chl as well as the unloaded cyclodextrin MbetaCD make holes and preferentially extract SM in supported bilayers. This strongly suggests that interpretation of MbetaCD and MbetaCD-Chl effects on cell membranes only in terms of cholesterol movements have to be treated with caution.  相似文献   

19.
Pulsed field gradient (pfg)-NMR measurements of the lipid lateral diffusion coefficients in several macroscopically aligned bilayer systems were summarized from previous and new studies. The aim was to carry out a comparison of the translational dynamics for bilayers with various mixtures of l,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chicken egg yolk sphingomyelin (eSM), with or without cholesterol. New useful information was obtained on the dynamics in these lipid bilayers that has not been previously appreciated. Thus, we were able to propose that the driving force behind the phase separation into l(d)and l(o)phases evolves from the increasing difficulty to incorpotate DOPC into a highly ordered phase. Our results suggest that DOPC has a preference to be located in a disordered phase, while DPPC and eSM prefer the ordered phase. Quite unexpectedly, CHOL seems to partition into both phases to roughly the same extent, indicating that CHOL has no particular preference for any of the l(d)or l(o) phases, and there are no specific interactions between CHOL and saturated lipids.  相似文献   

20.
The interaction of aqueous phospholipid dispersions of negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG) with the divalent cations Mg(2+), Ca(2+) and Sr(2+) at equimolar ratios in 100 mM NaCl at pH 7 was investigated by Fourier transform infrared spectroscopy. The binding of the three cations induces a crystalline-like gel phase with highly ordered and rigid all-trans acyl chains. These features are observed after storage below room temperature for 24 h. When the gel phase is heated after prolonged incubation at low temperature phase transitions into the liquid crystalline phase are observed at 58 degrees C for the DMPG:Sr(2+), 65 degrees C for the DMPG:Mg(2+), and 80 degrees C for the DMPG:Ca(2+) complex. By subsequent cooling from temperatures above T(m) these complexes retain the features of a liquid crystalline phase with disordered acyl chains until a metastable gel phase is formed at temperatures between 38 and 32 degrees C. This phase is characterized by predominantly all-trans acyl chains, arranged in a loosely packed hexagonal or distorted hexagonal subcell lattice. Reheating the DMPG:Sr(2+) samples after a storage time of 2 h at 4 degrees C results in the transition of the metastable gel to the liquid crystalline phase at 35 degrees C. This phase transition into the liquid crystalline state at 35 degrees C is also observed for the Mg(2+) complex. However, for DMPG:Mg(2+) at higher temperatures, a partial recrystallization of the acyl chains occurs and the high temperature phase transition at 65 degrees C is also detected. In contrast, DMPG:Ca(2+) exhibits only the phase transition at 80 degrees C from the crystalline gel into the fluid state upon reheating. Below 20 degrees C, the rate of conversion from the metastable gel to a thermodynamically stable, crystalline-like gel phase decreases in the order Ca(2+)&z. Gt;Mg(2+)>Sr(2+). This conversion into the crystalline gel phase is accompanied by a complete dehydration of the phosphate groups in DMPG:Mg(2+) and by a reorientation of the polar lipid head groups in DMPG:Ca(2+) and in DMPG:Sr(2+). The primary binding sites of the cations are the PO(2)(-) groups of the phosphodiester moiety. Our infrared spectroscopic results suggest a deep penetration of the divalent cations into the polar head group region of DMPG bilayers, whereby the ester carbonyl groups, located in the interfacial region of the bilayers, are indirectly affected by strong hydrogen bonding of immobilized water molecules. In the liquid crystalline phase, the interaction of all three cations with DMPG is weak, but still observable in the infrared spectra of the DMPG:Ca(2+) complex by a slight ordering effect induced in the acyl chains, when compared to pure DMPG liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号