共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites 总被引:1,自引:0,他引:1
Gioeli D Ficarro SB Kwiek JJ Aaronson D Hancock M Catling AD White FM Christian RE Settlage RE Shabanowitz J Hunt DF Weber MJ 《The Journal of biological chemistry》2002,277(32):29304-29314
Activation of signal transduction kinase cascades has been shown to alter androgen receptor (AR) activity. Although it has been suggested that changes in AR phosphorylation might be directly responsible, the basal and regulated phosphorylations of the AR have not been fully determined. We have identified the major sites of AR phosphorylation on ARs expressed in COS-1 cells using a combination of peptide mapping, Edman degradation, and mass spectrometry. We describe the identification of seven AR phosphorylation sites, show that the phosphopeptides seen with exogenously expressed ARs are highly similar to those seen with endogenous ARs in LNCaP cells and show that specific agonists differentially regulate the phosphorylation state of endogenous ARs in LNCaP prostate cancer cells. Treatment of LNCaP cells with the synthetic androgen, R1881, elevates phosphorylation of serines 16, 81, 256, 308, 424, and 650. Ser-94 appears constitutively phosphorylated. Forskolin, epidermal growth factor, and phorbol 12-myristate 13-acetate increase the phosphorylation of Ser-650. The kinetics of phosphorylation of most sites in response to hormone or forskolin is temporally delayed, reaching a maximum at 2 h post-stimulation. The exception is Ser-81, which continues to display increasing phosphorylation at 6 h. These data provide a basis for analyzing mechanisms of cross-talk between growth factor signaling and androgen in prostate development, physiology, and cancer. 相似文献
3.
4.
5.
6.
7.
8.
9.
SYNOPSIS. The ability of different sex hormones to activatesocial signals can provide important clues to the biochemicalmechanisms underlying these signals. A pattern of hormone specificityin which testosterone (T) and estradiol (E), but not dihydrotestosterone(DHT), are effective suggests that conversion (aromatization)of T to E in the brain may be involved or required; a patternin which T and DHT, but not E, are effective suggests that conversionof T to DHT may be involved. The hormone specificity of socialsignals in diverse species of vertebrates is reviewed. Aromatizationseems to be of widespread behavioral significance in mammalsandbirds. A role for conversion of T to DHT is suggested forsome signals. Aromatization of T mayalso be important for theactivation of adult female behavior in mammals and lizards,and for the early organization of behavior in mammals and birds.Patterns of hormone specificity differ both across species fora given social signal, and within a given species when differentsignals are compared. An attempt is made to integrate thesefindings by relating patterns of hormone specificity to hormonelevels, steroid receptor and enzyme concentrations and distributions,signal function and dimorphism, and phylogenetic status. 相似文献
10.
Shirley Chiang Tanya Burch Gary Van Domselaar Kevin Dick Alina Radziwon Craig Brusnyk Megan Rae Edwards Jessica Piper Todd Cutts Jingxin Cao Xuguang Li Runtao He 《Molecular and cellular biochemistry》2010,334(1-2):221-232
The cellular counterpart of the “soluble” guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway. 相似文献
11.
Condensin, one of the most abundant components of mitotic chromosomes, is a conserved protein complex composed of two structural maintenance of chromosomes (SMC) subunits (SMC2- and SMC4-type) and three non-SMC subunits, and it plays an essential role in mitotic chromosome condensation. Purified condensin reconfigures DNA structure using energy provided by ATP hydrolysis. To know the regulation of condensin in somatic cells, the expression level, subcellular localization, and phosphorylation status of human condensin were examined during the cell cycle. The levels of condensin subunits were almost constant throughout the cell cycle, and the three non-SMC subunits were phosphorylated at specific sites in mitosis and dephosphorylated upon the completion of mitosis. Subcellular fractionation studies revealed that a proportion of condensin was tightly bound to mitotic chromosomes and that this form was phosphorylated at specific sites. Condensin purified from mitotic cells had much stronger supercoiling activity than that purified from interphase cells. These results suggest that condensin functions in somatic cells are regulated by phosphorylation in two ways during the cell cycle; the phosphorylation of specific sites correlates with the chromosomal targeting of condensin, and its biochemical activity is stimulated by phosphorylation. 相似文献
12.
13.
14.
15.
16.
Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation 总被引:19,自引:0,他引:19
Ca2+-activated, phospholipid-dependent protein kinase (C-kinase) in platelets is normally activated by diacylglycerol, which is derived from phosphatidylinositol through its receptor-linked breakdown. Under appropriate conditions this enzyme can also be activated by synthetic diacylglycerol which is directly added to intact platelets. C-Kinase thus activated preferentially phosphorylates an endogenous platelet protein having a molecular weight of approximately 40,000. This protein phosphorylation is merely a prerequisite but not a sufficient requirement for the release of serotonin. Evidence is presented suggesting that Ca2+ mobilization and C-kinase activation are synergistically involved in the physiological response of platelets to extracellular messengers, such as thrombin, collagen and platelet-activating factor. 相似文献
17.
18.
19.
Lipfert L Fisher JE Wei N Scafonas A Su Q Yudkovitz J Chen F Warrier S Birzin ET Kim S Chen HY Tan Q Schmidt A Dininno F Rohrer SP Hammond ML Rodan GA Freedman LP Reszka AA 《Molecular endocrinology (Baltimore, Md.)》2006,20(3):516-533
Estrogen receptor alpha (ERalpha) serine 118 (Ser118) phosphorylation modulates activation function-1 (AF1) function. Correct positioning of helix 12 promotes agonist-dependent recruitment of cyclin-dependent kinase-7 to catalyze this event. In this study we show robust cyclin-dependent kinase-7-independent, AF2 antagonist-induced Ser118 phosphorylation. Estradiol (E2) and ICI-182,780 (ICI-780) induce Ser118 phosphorylation of wild-type ERalpha and either of two helix 12 mutants, suggesting AF2-independent action, probably via shedding of 90-kDa heat shock protein. With E2 treatment, the predominantly nuclear, phosphorylated ERalpha in COS-1 cells is detergent soluble. Although levels of ICI-780-induced phosphorylation are profound, Ser118-phosphorylated ERalpha is aggregated over the nucleus or in the cytoplasm, fractionating with the cell debris and making detection in cleared lysates improbable. Selective ER modulators (SERMs) elicit a mixed response with phosphorylated ERalpha in both detergent-soluble and -insoluble compartments. Apparent ligand-induced loss of ERalpha protein from cleared lysates is thus due to ligand-induced redistribution into the pellet, not degradation. The COS-1 response to ICI-780 can be mimicked in MCF-7 cells treated with a proteasome inhibitor to block authentic ligand-induced degradation. With SERMs and antagonists, the magnitude of Ser118-phosphorylated receptor redistribution into the insoluble fraction of COS-1 cells correlates with the magnitude of authentic ERalpha degradation in MCF-7 cells. A strong inverse correlation with ligand-induced uterotropism in vivo (P < 0.0001) and direct correlation with AF2-independent transrepression of the matrix metalloprotease-1 promoter in endometrial cells in vitro are seen. These data suggest that ligand-induced Ser118 phosphorylation of ERalpha can be AF2 independent. Furthermore, they identify translocation of Ser118-phosphorylated ERalpha out of the nucleus, leading to cytoplasmic aggregation, as an antagonist pathway that may precede receptor degradation. 相似文献