首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.  相似文献   

2.
The uptake hydrogenase of chemolithotrophically grown Rhizobium japonicum was purified to apparent homogeneity with a final specific activity of 69 mumol of H2 oxidized per min per mg of protein. The procedure included Triton extraction of broken membranes and DEAE-cellulose and Sephacryl S-200 chromatographies. The purified protein contained two polypeptides separable only by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They comigrated on native polyacrylamide gels and sucrose density gradients. The molecular weights were ca. 60,000 and 30,000. Densitometric scans of the sodium dodecyl sulfate gels indicated a molar ratio of 1.03 +/- 0.03. Antiserum was developed against the 60-kilodalton polypeptide for use in hydrogenase detection by an enzyme-linked immunosorbent assay. The antiserum did not cross-react with the 30-kilodalton polypeptide. Native gel electrophoresis of Triton-extracted cells grown in the presence of 63Ni showed comigration of the hydrogenase and radioactive Ni.  相似文献   

3.
Eight strains of Rhizobium lacking hydrogenase uptake (Hup) activity and 17 transconjugant strains carrying the hup cosmids pHU1, pHU52, or pHU53 (G. R. Lambert, M. A. Cantrell, F. J. Hanus, S. A. Russell, K. R. Haddad, and H. J. Evans, Proc. Natl. Acad. Sci. USA, 82:3232-3236, 1985) were screened for Hup activity and the presence of immunologically detectable hydrogenase polypeptides. Crude extracts of these strains were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis with affinity-purified antibodies against the two subunits of purified hydrogenase (Mr 60,000 and 30,000). Derepressed transconjugants carrying the cosmid pHU52 were Hup+ and contained detectable levels of both hydrogenase subunit polypeptides. Non-derepressed strains, Hup- parent strains, and strains carrying cosmids other than pHU52 did not express Hup activity and contained no immunologically detectable protein. These data provide further evidence for the essential involvement of the smaller (Mr 30,000) subunit in the expression of hydrogenase activity in Rhizobium japonicum and suggest that the determinants for hydrogenase subunit synthesis are present on pHU52.  相似文献   

4.
5.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

6.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

7.
The expression of cosmid-borne Bradyrhizobium japonicum hydrogenase genes in alfalfa, clover, and soybean nodules harboring Rhizobium transconjugants was studied. Cosmid pHU52 conferred hydrogen uptake (Hup) activity in both free-living bacteria and in nodules on the different plant hosts, although in nodules the instability of the cosmid resulted in low levels of Hup activity. In contrast, cosmid pHU1, which does not confer Hup activity on free-living bacteria, gave a Hup+ phenotype in nodules on alfalfa and soybean. Nodules formed by B. japonicum USDA 123Spc(pHU1) recycled about 90% of nitrogenase-mediated hydrogen evolution. Both subunits of hydrogenase (30- and 60-kilodalton polypeptides) were detected in enzyme-linked immunosorbent assays of bacteroid preparations from nodules harboring B. japonicum strains with pHU1 or pHU52. Neither pHU53 nor pLAFR1 conferred detectable Hup activity in either nodules or free-living bacteria. Based on the physical maps of pHU1 and pHU52, it is suggested that a 5.5-kilobase EcoRI fragment unique to pHU52 contains a gene or part of a gene required for Hup activity in free-living bacteria but not in nodules. This conclusion is supported by the observation that two Tn5 insertions in the chromosome of B. japonicum USDA 122DES obtained by marker exchange with Tn5-mutagenized pHU1 abolished Hup activity in free-living bacteria but not in nodules.  相似文献   

8.
We found that Salmonella typhimurium strain LT2 (Z) possessed two immunologically distinct, membrane-bound hydrogenase isoenzymes, which were similar in electrophoretic mobilities and apoprotein contents to hydrogenase isoenzymes 1 and 2 of Escherichia coli. The S. typhimurium enzymes cross-reacted with antibodies raised to the respective hydrogenase isoenzymes of E. coli. As for E. coli, an additional membrane-bound hydrogenase activity (termed hydrogenase 3), which did not cross-react with antibodies raised against either hydrogenase 1 or 2, was also present in detergent-dispersed membrane preparations. The physiological role of each of the three isoenzymes in E. coli has remained unclear owing to the lack of mutants specifically defective for individual isoenzymes. However, analysis of two additional wild-type isolates of S. typhimurium revealed specific defects in their hydrogenase isoenzyme contents. S. typhimurium LT2 (A) lacked isoenzyme 2 but possessed normal levels of hydrogenases 1 and 3. S. typhimurium LT7 lacked both isoenzymes 1 and 2 but retained normal hydrogenase 3 activity. Characterization of hydrogen metabolism by these hydrogenase-defective isolates allowed us to identify the physiological role of each of the three isoenzymes. Hydrogenase 3 activity correlated closely with formate hydrogenlyase-dependent hydrogen evolution, whereas isoenzyme 2 catalyzed hydrogen uptake (oxidation) during anaerobic, respiration-dependent growth. Isoenzyme 1 also functioned as an uptake hydrogenase but only during fermentative growth. We postulate that this enzyme functions in a hydrogen-recycling reaction which operates during fermentative growth.  相似文献   

9.
The expression of ex planta uptake hydrogenase (Hup) activity in Bradyrhizobium japonicum SR induced in the absence or presence of carbon substrates was compared. Hup activity was influenced by pH, indicating that acidification of induction medium with low buffering capacity resulting from carbon substrate metabolism inhibited Hup activity. Cell suspensions in medium with adequate buffering capacity and carbon substrate were limited in O2; increasing O2 availability to cells during induction stimulated Hup expression. The data showed a lack of carbon substrate repression of Hup activity in cell suspensions provided with adequate O2 and buffering capacity.  相似文献   

10.
11.
Nickel is a component of hydrogenase in Rhizobium japonicum   总被引:23,自引:12,他引:11       下载免费PDF全文
The derepression of H2-oxidizing activity in free-living Rhizobium japonicum does not require the addition of exogenous metal to the derepression media. However, the addition of EDTA (6 microM) inhibited derepression of H2 uptake activity by 80%. The addition of 5 microM nickel to the derepression medium overcame the EDTA inhibition. The addition of 5 microM Cu or Zn also relieved EDTA inhibition, but to a much lesser extent; 5 microM Fe, Co, Mg, or Mn did not. The kinetics of induction and magnitude of H2 uptake activity in the presence of EDTA plus Ni were similar to those of normally derepressed cells. Nickel also relieved EDTA inhibition of methylene blue-dependent Hup activity, suggesting that nickel is involved directly with the H2-activating hydrogenase enzyme. Adding nickel or EDTA to either whole cells or crude extracts after derepression did not affect the hydrogenase activity. Cells were grown in 63Ni and the hydrogenase was subsequently purified by gel electrophoresis. 63Ni comigrated with the H2-dependent methylene blue reducing activity on native polyacrylamide gels and native isoelectric focusing gels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the nickel-containing hydrogenase band revealed a single polypeptide with a molecular weight of ca. 67,000. We conclude that the hydrogenase enzyme in R. japonicum is a nickel-containing metalloprotein.  相似文献   

12.
Strains I-110 ARS, SR, USDA 136, USDA 137, and AK13 1c of Bradyrhizobium japonicum induced Hup activity when growing heterotrophically in medium with carbon substrate and NH4Cl in the presence of 2% H2 and 2% O2. Hup activity was induced during heterotrophic growth in the presence of carbon substrates, which were assimilated during the time of H2 oxidation. Strains I-110 ARS and SR grown heterotrophically or chemoautotrophically for 3 days had similar rates of H2 oxidation. Similar rates of Hup activity were also observed when cell suspensions were induced for 24 h in heterotrophic or chemoautotrophic growth medium with 1% O2, 10% H2, and 5% CO2 in N2. These results are contrary to the reported repression of Hup activity by carbon substrates in B. japonicum. Bradyrhizobial Hup activity during heterotrophic growth was limited by H2 and O2 and repressed by aerobic conditions, and CO2 addition had no effect. Nitrogenase and ribulosebisphosphate carboxylase activities were not detected in H2-oxidizing cultures of B. japonicum during heterotrophic growth. Immunoblot analysis of cell extracts with antibodies prepared against the 65-kilodalton subunit of uptake hydrogenase indicated that Hup protein synthesis was induced by H2 and repressed under aerobic conditions.  相似文献   

13.
A cosmid library of Rhodopseudomonas capsulata DNA was constructed in Escherichia coli HB101 using the broad-host-range cosmid vector pLAFR1. More than ninety per cent of the clones in the bank contained cosmids with DNA inserts averaging 20 kilobase pairs in length. Mutants deficient in uptake hydrogenase (Hup-) were obtained from R. capsulata strain B10 by ethylmethylsulfonate (EMS) mutagenesis. The content of hydrogenase protein in Hup- mutant cells was tested by rocket immunoelectrophoresis. Hup- mutants (Rifr) were complemented with the clone bank by conjugation and, from the transconjugants selected by rifampicin and tetracycline resistance, Hup+ transconjugants were screened for the ability to grow photoautotrophically and to reduce methylene blue in a colony assay. The recombinant plasmid pAC57 restored hydrogenase activity in the Hup- mutants RCC8, RCC10, RCC12 and ST410 whereas pAG202 restored that of IR4. The cloned R. capsulata DNA insert of pAC57 gave 5 restriction fragments by cleavage with EcoRI endonuclease. Fragment 1 (7 kb) restored hydrogenase activity in Hup- mutant strains RCC12 and ST410 and fragment 5 (1.3 kb) in strains RCC8 and RCC10. Since the 2 cosmids pAC57 and pAG202 are different cosmids, as indicated by restriction analyses and absence of cross hybridization, it is concluded that at least two hup genes are required for the expression of hydrogenase activity in R. capsulata.  相似文献   

14.
Strains of Rhizobium forming nitrogen-fixing symbioses with common bean were systematically examined for the presence of the uptake hydrogenase (hup) structural genes and expression of uptake hydrogenase (Hup) activity. DNA with homology to the hup structural genes of Bradyrhizobium japonicum was present in 100 of 248 strains examined. EcoRI fragments with molecular sizes of approximately 20.0 and 2.2 kb hybridized with an internal SacI fragment, which contains part of both bradyrhizobial hup structural genes. The DNA with homology to the hup genes was located on pSym of one of the bean rhizobia. Hup activity was observed in bean symbioses with 13 of 30 strains containing DNA homologous with the hup structural genes. However, the Hup activity was not sufficient to eliminate hydrogen evolution from the nodules. Varying the host plant with two of the Hup+ strains indicated that expression of Hup activity was host regulated, as has been reported with soybean, pea, and cowpea strains.  相似文献   

15.
The role of uptake hydrogenase was studied in Rhizobium leguminosarum bacteroids from the nodules of Pisum sativum L. cv. Homesteader. Uptake hydrogenase activity, measured by the 3H2 uptake method, was dependent on O-consumption and was similar to H2 uptake measured by gas chromatography. Km for O2 of 0.0007 atm (0.0709 kPa) and a Km for H2 of 0.0074 atm (0.7498, kPa) were determined. H2 increased the rate of endogenous respiration by isolates with uptake hydrogenase (Hup+) but had no effect on an isolate lacking uptake hydrogenase (Hup-). A survey of 14 Hup+ isolates indicated a wide range of H2 uptake activities. Four of the isolates tested had activities similar to or higher than those found in two Hup+ Rhizobium japonicum strains. H2 uptake was strongly coupled to ATP formation in only 5 of the 14 isolates. H2 increased the optimal O2 level of C2H2 reduction by 0.01 atm and permitted enhanced C2H2 reduction at O2 levels above the optimum in both a coupled and an uncoupled isolate. At suboptimal O2 concentrations a small enhancement of C2H2 reduction by H2 was seen in two out of three isolates in which H2 oxidation was coupled to ATP formation. Thus, the main function of uptake hydrogenase in R. leguminosarum appears to be in the protection of nitrogenase from O2 damage.  相似文献   

16.
This report elucidates the distinctions of redox properties between two uptake hydrogenases in Escherichia coli. Hydrogen uptake in the presence of mediators with different redox potential was studied in cell-free extracts of E. coli mutants HDK103 and HDK203 synthesizing hydrogenase 2 or hydrogenase 1, respectively. Both hydrogenases mediated H(2) uptake in the presence of high-potential acceptors (ferricyanide and phenazine methosulfate). H(2) uptake in the presence of low-potential acceptors (methyl and benzyl viologen) was mediated mainly by hydrogenase 2. To explore the dependence of hydrogen consumption on redox potential of media in cell-free extracts, a chamber with hydrogen and redox ( E(h)) electrodes was used. The mutants HDK103 and HDK203 exhibited significant distinctions in their redox behavior. During the redox titration, maximal hydrogenase 2 activity was observed at the E(h) below -80 mV. Hydrogenase 1 had maximum activity in the E(h) range from +30 mV to +110 mV. Unlike hydrogenase 2, the activated hydrogenase 1 retained activity after a fast shift of redox potential up to +500 mV by ferricyanide titration and was more tolerant to O(2). Thus, two hydrogenases in E. coli are complementary in their redox properties, hydrogenase 1 functioning at higher redox potentials and/or at higher O(2) concentrations than hydrogenase 2.  相似文献   

17.
In Azotobacter chroococcum the hydrogenase structural genes (hupSL) cover about 2.8 kb of a 15-kb region associated with hydrogen-uptake (Hup) activity. Two other genes in this region, hupD and hupE, were located 8.9 kb downstream of hupL and were shown to be essential for hydrogenase activity by insertion mutagenesis. A fragment of DNA beginning 3.4 kb downstream of hupL was able to complement the hupE mutant, supporting earlier evidence for a promoter downstream of hupSL. Hybridization experiments showed that hupD and hupE share some similarity with a region of Alcaligenes eutrophus DNA which is apparently involved in the formation of catalytically active hydrogenase. The hupD gene encodes a 379-amino acid, 41.4-kDa polypeptide while hupE codes for a 341-amino acid, 36.1-kDa product. The predicted amino acid sequences of the hupD and hupE genes are homologous to the Escherichia coli hypD and hypE gene products, respectively. A polar mutation in hupD had no effect on beta-galactosidase activity in a strain also carrying a hupL-lacZ fusion, indicating that hupD and hupE are probably not involved in regulating hydrogenase structural gene expression.  相似文献   

18.
19.
Nif- Hup- mutants of Rhizobium japonicum.   总被引:7,自引:2,他引:5       下载免费PDF全文
Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity.  相似文献   

20.
A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号