首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary  The lack of a suitable flat epithelial preparation isolated directly from the freshwater fish gill has led, in recent years, to the development of cultured gill epithelia on semipermeable supports. To date, their minimal capacity to actively transport ions has limited their utility as ionoregulatory models. The current study describes a new method of culturing gill epithelia consisting either of an enriched population of pavement (PV) cells or a mixed population of PV cells and mitochondria-rich (MR) cells from the gills of adult rainbow trout. Although the cell culture approach is similar to the double-seeded insert (DSI) technique described previously, it makes use of Percoll density centrifugation to first separate populations of PV and MR cells, which are then seeded on cell culture supports in varying proportions on successive days so as to produce preparations enriched in one or the other cell types. Based on rhodamine staining, the MR cell-rich epithelia exhibited a threefold higher enrichment of MR cells compared to traditional DSI preparations. In general, MR cell-rich epithelia developed extremely high transepithelial resistances (TER; >30 kΩ cm2) and positive transepithelial potentials (TEP) under symmetrical conditions (i.e., L15 medium on both apical and basolateral sides). Apical exposure of cell cultures to freshwater reduced TER and produced a negative TEP in all the epithelial preparations, although MR cell-rich epithelia maintained relatively high TER and negative TEP for over 2 d under these asymmetrical conditions. Measurement of unidirectional Na+ fluxes and application of the Ussing flux ratio criterion demonstrated active Na+ uptake in PV cell-rich and MR cell-rich epithelia under both symmetrical and asymmetrical conditions. In comparison, Ca2+ uptake and Na+/K+-ATPase activity were significantly elevated in MR cell-rich preparations relative to the traditional DSI or PV cell-rich cultures under symmetrical conditions. This new methodology enhances our ability to tailor cultured gill epithelia on semipermeable supports with different proportions of PV cells and MR cells, thereby illuminating the ionoregulatory functions of the two cell types.  相似文献   

2.
The electrophysiological and ion-transporting properties of cultured gill epithelia from freshwater (FW) rainbow trout were examined in the presence of cortisol and prolactin as media supplements. Epithelia were of the double-seeded insert (DSI) type containing both pavement cells (PVCs) and mitochondria-rich cells (MRCs) and were grown in Leibovitz's L15 media on filters allowing exposure to different apical media conditions. Experiments were carried out in two series after 7-9 days symmetrical (L15 apical-L15 basolateral) culture. In both series, 100% L15 was maintained as the basolateral medium throughout and supplemented with physiologically relevant doses of either prolactin (50 ng/ml), cortisol (500 ng/ml), or cortisol + prolactin (500 + 50 ng/ml, respectively). In series 1, epithelia were exposed to progressively diluted apical media (100, 75, 50, 25, 12.5% L15, and FW) at 24-h intervals. The preparations retained integrity [high transepithelial resistance (TER); low ion efflux rates] during this prolonged dilution protocol. Cortisol, or cortisol + prolactin, resulted in a greater TER and reduced ion efflux rates during dilution, likely an effect on junctional permeability of PVCs, but did not promote active Na+ and Cl- uptake from apical FW. In series 2, epithelia were directly exposed to apical FW and ion fluxes measured over the first 6 h. Under these conditions, cortisol or cortisol + prolactin promoted active uptake of both Na+ and Cl- simultaneously from apical FW, probably attributable to actions on the MRCs. However, Na+-K+-ATPase activities were not significantly altered by any of the treatments in either series. Overall, prolactin alone did not appear to promote FW adaptation but exhibited synergism with cortisol. These results provide further support for the cultured DSI epithelium as an in vitro model for ion transport in FW fish.  相似文献   

3.
The electrophysiological and ion-transporting properties of cultured gill epithelia from freshwater (FW) rainbow trout were examined in the presence of dilute cell culture media as an environmental or physiological simulant. Gill epithelia were cultured on cell culture inserts under symmetrical conditions (L15 apical-L15 basolateral) for 6-7 d. The following experiments were then conducted. (1) To mimic a gradual lowering of environmental salinity, apical L15 medium was progressively diluted with FW (first to 2/3 L15 for 8 h and then to 1/3 L15 for 6 h) before the introduction of apical FW (FW apical-L15 basolateral, analogous to a fish in a natural FW environment). Dilute apical media had no significant effect on the electrophysiological properties of preparations compared with symmetrical culture conditions, and no evidence for active Na(+) or Cl(-) transport was observed. Preparations subsequently exposed to apical FW exhibited a negative transepithelial potential and evidence of active Cl(-) uptake and slight Na(+) extrusion. (2) To mimic the extracellular fluid dilution that occurs in euryhaline fish after abrupt transfer from saline to FW, the osmolality or ionic strength (or both) of basolateral media was reduced by 20-40% (using either FW or FW + mannitol) while simultaneously replacing apical media with FW. Under these conditions, Na(+) and Cl(-) influx rates were low compared with efflux rates, while the Ussing flux ratio analysis generally indicated active Cl(-) uptake and Na(+) extrusion. The Na(+)-K(+) adenosine triphosphatase activity was not affected by alterations in basolateral osmolality. Our studies indicate that cultured trout gill epithelia are tolerant of media dilution from both the apical and the basolateral direction; however, neither treatment alone appeared to increase ion influx rates or stimulate active Na(+) uptake in cultured trout gill epithelia.  相似文献   

4.
Procedures for the preparation and culture of branchial epithelia from dispersed gill cells of freshwater tilapia (Oreochromis niloticus) are described. Epithelia were cultured on permeable supports (terephthalate membranes, "filters") and bathed on both the apical and basolateral side with isotonic media containing 6% fetal bovine serum (FBS). When the apical medium was replaced with freshwater (pseudo in vivo asymmetrical culture conditions), transepithelial resistance (TER) increased markedly, transepithelial potential became negative, and paracellular permeability decreased. The physiological effects of cortisol and 10% homologous (tilapia) serum were investigated. Tilapia serum (TS) was prepared from unstressed and stressed fish and therefore allowed comparison between the effects of homologous serum derived from fish in differing physiological states. Under both symmetrical and asymmetrical culture conditions, cortisol significantly elevated TER across cultured tilapia gill epithelia, indicative of a significant increase in epithelial "tightness." Cortisol reduced transepithelial Na + and Cl? movement and paracellular permeability. The glucocorticoid agonist dexamethasone elicited a similar response, which was inhibited by the glucocorticoid antagonist (receptor blocker) RU486. Cortisol did not stimulate active ion transport across epithelia under either symmetrical or asymmetrical culture conditions. In epithelia supplemented with TS from stressed fish, physiological changes in cultured preparations were consistent with those observed in FBS + cortisol-supplemented epithelia. Differences between the physiological status of epithelia supplemented with TS from unstressed and stressed fish could be abolished with RU486. Using TS as a medium supplement did not stimulate active ion transport under asymmetrical culture conditions, although Na +-K +-ATPase activity increased in TS-supplemented epithelia relative to FBS-supplemented preparations.  相似文献   

5.
The freshwater fish gill forms a barrier against an external hypotonic environment. By culturing rainbow trout gill cells on permeable supports, as intact epithelia, this study investigates barrier property mechanisms. Under symmetrical conditions the apical and basolateral epithelial surfaces contact cell culture media. Replacing apical media with water, to generate asymmetrical conditions (i.e. the situation encountered by the freshwater gill), rapidly increases transepithelial resistance (TER). Proteomic analysis revealed that this is associated with enhanced expression of pre-apolipoprotein AI (pre-apoAI). To test the physiological relevance, gill cells were treated with a dose of 50 microg ml(-1) human apolipoprotein (apoAI). This was found to elevate TER in those epithelia which displayed a lower TER prior to apoAI treatment. These results demonstrate the action of apoAI and provide evidence that the rainbow trout gill may be a site of apoAI synthesis. TER does not differentiate between the trans-cellular (via the cell membrane) and para-cellular (via intercellular tight junctions) pathways. However, despite the apoAI-induced changes in TER, para-cellular permeability (measured by polyethylene glycol efflux) remained unaltered suggesting apoAI specifically reduces trans-cellular permeability. This investigation combines proteomics with functional measurements to show how a proteome change may be associated with freshwater gill function.  相似文献   

6.
Summary The effect of cortisol on calcium (Ca2+) transport across cultured rainbow trout gill epithelia composed of both pavement cells (PVCs) and mitochondria-rich cells (MRCs) was examined. Under symmetrical culture conditions (L15 media apical/L15 media basolateral), cortisol had subtle effects on gill epithelial preparations. Both control and cortisol treated epithelia exhibited Ca2+ influx and efflux rates (measured radioisotopically using 45Ca) that were approximately balanced, with a slight inwardly directed net Ca2+ flux. Ussing flux ratio analysis indicated active Ca2+ transport in the inward direction across epithelia bathed symmetrically regardless of hormone treatment. In contrast, under asymmetrical conditions (freshwater apical/L15 media basolateral) control epithelia exhibited active Ca2+ transport in the outward direction (basolateral to apical) throughout experiments conducted over a 24-h period, whereas cortisol-treated preparations exhibited active transport in the inward direction (apical to basolateral) during the early stages of an asymmetrical culture period (e.g., T0–6 h) and passive transport during the later stages (e.g., T18–24 h). When soft freshwater (with tenfold lower [Ca2+]) was used for asymmetrical culture instead of freshwater, control epithelia developed outwardly directed active Ca2+ transport properties, whereas cortisol-treated preparations did not. The results of this study support a hypercalcemic role for cortisol in rainbow trout and demonstrate that treating cultured gill epithelia composed of both PVCs and MRCs with cortisol can stimulate active Ca2+ uptake under circumstances that more closely resemble natural conditions for fish gills (i.e., freshwater bathing the apical side of the epithelium).  相似文献   

7.
Cortisol had dose-dependent effects on the electrophysiological, permeability, and ion-transporting properties of cultured pavement cell epithelia derived from freshwater rainbow trout gills and grown on cell culture filter supports. Under both symmetrical (L15 media apical/L15 media basolateral) and asymmetrical (freshwater apical/L15 media basolateral) culture conditions, cortisol treatment elevated transepithelial resistance, whereas permeability of epithelia to a paracellular permeability marker (polyethylene glycol-4000) decreased. Cortisol did not alter the Na(+)-K(+)-ATPase activity or the total protein content of the cultured preparations. During 24-h exposure to asymmetrical conditions, the net loss rates of both Na(+) and Cl(-) to the water decreased with increasing cortisol dose, an important adaptation to dilute media. Unidirectional Na(+) and Cl(-) flux measurements and the application of the Ussing flux-ratio criterion revealed cortisol-induced active uptake of both Na(+) and Cl(-) under symmetrical culture conditions together with an increase in transepithelial potential (positive on the basolateral side). Under asymmetrical conditions, cortisol did not promote active ion transport across the epithelium. These experiments provide evidence for the direct action of cortisol on cultured pavement cell epithelia and, in particular, emphasize the importance of cortisol for limiting epithelial permeability.  相似文献   

8.
Branchial epithelia of freshwater rainbow trout were cultured on permeable supports, polyethylene terephthalate membranes ("filter inserts"), starting from dispersed gill epithelial cells in primary culture. Leibowitz L-15 media plus foetal bovine serum and glutamine, with an ionic composition similar to trout extracellular fluid, was used. After 6 days of growth on the filter insert with L-15 present on both apical and basolateral surfaces, the cultured preparations exhibited stable transepithelial resistances (generally 1000-5000 ohms cm2) typical of an electrically tight epithelium. Under these symmetrical conditions, transepithelial potential was zero, and unidirectional fluxes of Na+ and Cl- across the epithelium and permeability to the paracellular marker polyethylene glycol-4000 (PEG) were equal in both directions. Na+ and Cl- fluxes were similar to one another and linearly related to conductance (inversely related to resistance) in a manner indicative of fully conductive passive transport. Upon exposure to apical fresh water, transepithelial resistance increased greatly and a basolateral-negative transepithelial potential developed. At the same time, however, PEG permeability and unidirectional effluxes of Na+ and Cl- increased. Thus, total conductance fell, and ionic fluxes and paracellular permeability per unit conductance all increased greatly, consistent with a scenario whereby transcellular conductance decreases but paracellular permeability increases upon dilution of the apical medium. In apical fresh water, there was a net loss of ions from the basolateral to apical surfaces as effluxes greatly exceeded influxes. However, application of the Ussing flux ratio criterion, in two separate series involving different methods for measuring unidirectional fluxes, revealed active influx of Cl- against the electrochemical gradient but passive movement of Na+. The finding is surprising because the cultured epithelium appears to consist entirely of pavement-type cells.  相似文献   

9.
10.
In this study, we aimed to establish an experimental model to study the role of the gill mitochondrion-rich cells (MRCs) of freshwater fish in Na(+) uptake and to examine the effect of adjusting external Na(+) and Cl(-) ions on selected ion transporters in gill MRCs. Japanese eels (Anguilla japonica) acclimated to deionized (DI) water for 2 weeks were transferred directly to (a) ion-supplemented artificial freshwater (AF), (b) Na(+) -deficient AF, or (c) Cl(-) -deficient AF for 2 days. The effects of the transfer on the expression levels of ion transporters in isolated gill cells were investigated. Our data demonstrated that the 2-day acclimation in ion-supplemented AF, Na(+) -deficient AF, or Cl(-) -deficient AF led to a significant increase in serum osmolarity attributed mainly to an increase in serum Na(+) and/or Cl(-) levels when compared with DI-acclimated eel. Significant inductions of V-type H(+) -ATPase (V-H(+) -ATPase) and cotransporter (NBC1) mRNA expression in gill MRCs were detected in AF-acclimated fish. In fish acclimated to Na(+) -deficient AF, mRNA expression levels of V-H(+) -ATPase, NBC1, and Na(+) /H(+) -exchanger-3 (NHE3) were significantly increased in MRCs. Fish acclimated to Cl(-) -deficient AF showed no observable change in expression levels of ion transporters in gill MRCs. In addition, expression levels of ion transporters in pavement cells were stable throughout the 2-day experiments. These data indicate that the level of Na(+) in freshwater is important for altering the mRNA expression of ion transporters in gill MRCs, which supports the notion that gill MRCs play important roles in freshwater Na(+) uptake.  相似文献   

11.
Techniques for the primary culture of fish gill epithelia on permeable supports have provided ‘reconstructed’ gill models appropriate for the study of gill permeability characteristics in vitro. Models developed thus far have been derived from euryhaline fish species that can tolerate a wide range of environmental salinity. This study reports on procedures for the primary culture of a model gill epithelium derived from goldfish, a stenohaline freshwater (FW) fish that cannot tolerate high environmental salt concentrations. The reconstructed goldfish gill epithelium was cultured on permeable filter inserts and using electron microscopy and immunocytochemical techniques, was determined to be composed exclusively of gill pavement cells. When cultured under symmetrical conditions (i.e. with culture medium bathing both apical and basolateral surfaces), epithelial preparations generated appreciable transepithelial resistance (TER) (e.g. 1,150 ± 46 Ωcm2) within 36–42 h post-seeding in inserts. When apical medium was replaced with FW (asymmetrical conditions to mimic conditions that occur in vivo), epithelia exhibited increased TER and elevated paracellular permeability. Changes in permeability occurred in association with altered occludin-immunoreactive band position by western blot and no change in occludin mRNA abundance. We contend that the goldfish gill model will provide a useful in vitro tool for examining the molecular components of a stenohaline fish gill epithelium that participate in the regulation of gill permeability. The model will allow molecular observations to be made together with assessment of changing physiological properties that relate to permeability. Together, this will allow further insight into mechanisms that regulate gill permeability in fishes.  相似文献   

12.
The paper reviews the evidence for apparent sodium-dependent copper (Cu) uptake across epithelia such as frog skin, fish gills and vertebrate intestine. Potential interactions between Na(+) and Cu during transfer through epithelial cells is rationalized into the major steps of solute transfer: (i) adsorption on to the apical/mucosal membrane, (ii) import in to the cell (iii) intracellular trafficking, and (iv) export from the cell to the blood. Interactions between Na(+) and Cu transport are most likely during steps (i) and (ii). These ions have similar mobilities (lambda) in solution (lambda, Na(+), 50.1; Cu(2+), 53.6 cm(2) Int. ohms(-1) equiv(-1)); consequently, Cu(2+) may compete equally with Na(+) for diffusion to membrane surfaces. We present new data on the Na(+) binding characteristics of the gill surface (gill microenvironment) of rainbow trout. The binding characteristics of Na(+) and Cu(2+) to the external surface of trout gills are similar with saturation of ligands at nanomolar concentrations of solutes. At the mucosal/apical membrane of several epithelia (fish gills, frog skin, vertebrate intestine), there is evidence for both a Cu-specific channel (CTR1 homologues) and Cu leak through epithelial Na(+) channels (ENaC). Cu(2+) slows the amiloride-sensitive short circuit current (I(sc)) in frog skin, suggesting Cu(2+) binding to the amiloride-binding site of ENaC. We present examples of data from the isolated perfused catfish intestine showing that Cu uptake across the whole intestine was reduced by 50% in the presence of 2 mM luminal amiloride, with 75% of the overall inhibition attributed to an amiloride-sensitive region in the middle intestine. Removal of luminal Na(+) produced more variable results, but also reduced Cu uptake in catfish intestine. These data together support Cu(2+) modulation of ENaC, but not competitive entry of Cu(2+) through ENaC. However, in situations where external Na(+) is only a few millimoles (fish gills, frogs in freshwater), Cu(2+) leak through ENaC is possible. CTR1 is a likely route of Cu(2+) entry when external Na(+) is higher (e.g. intestinal epithelia). Interactions between Na(+) and Cu ions during intracellular trafficking or export from the cell are unlikely. However, effects of intracellular chloride on the Cu-ATPase or ENaC indicate that Na(+) might indirectly alter Cu flux. Conversely, Cu ions inhibit basolateral Na(+)K(+)-ATPase and may increase [Na(+)](i).  相似文献   

13.
14.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

15.
We investigated gradual dilution of the apical medium (Leibovitz's L15 to fresh water [FW], analogous to gradual reduction in environmental salinity) and basolateral hormone support on the electrophysiological and ion-transporting properties of "developing" FW trout gill epithelia cultured on filter inserts. Epithelia were of the double-seeded type, containing both pavement cells and mitochondria-rich cells. In these experiments we were able to circumvent "symmetrical development" (typically L15 apical/L15 basolateral for 6-9 days) by commencing dilution of apical media (unchanged L15 basolateral, i.e., asymmetrical conditions) at culture-day 3, the time when transepithelial resistance (TER) and potential (TEP) would normally be increasing rapidly under symmetrical conditions. In Series 1 (without basolateral hormone support), epithelia were exposed to progressively diluted apical media (100%, 75%, 50% L15) at 24-hr intervals, thereafter cultured in 50% L15 apical media for 4 days, and then in apical FW. In Series 2, epithelia were exposed to progressively diluted apical media (100%, 75%, 50%, 25%, 12.5% L15, and FW) at 24-hr intervals with physiologically relevant doses of cortisol (500 ng ml(-1)), prolactin (50 ng ml(-1)), or cortisol + prolactin (500 ng ml(-1) + 50 ng ml(-1), respectively) added to basolateral media (100% L15). In Series 1, TER reached a plateau phase over 25 kohms cm2 under 50% L15/L15 culture conditions (after 4 days of culture) but fell to approximately 6 kohms cm2 after 24 hr in FW/L15 conditions. In Series 2, TER stabilized at 4-11 kohms cm2 depending on treatment. In general, apical media dilution during epithelial development was well tolerated. Preparations exhibited continued integrity right down to apical FW, indicated by only modest increases in net ion losses (i.e., basolateral to apical movement of ions), relatively stable TER values, and the expected changeover from positive to negative TEP in FW. Cortisol was clearly beneficial to FW adaptation, promoting greater TER, reduced unidirectional and net Na+ and Cl- flux rates, and elevated Na+, K+ -ATPase activity. Prolactin also offered some support, where its actions on TER were less than but additive to those of cortisol. There was no direct evidence that prolactin limited ion movements during gradual dilution. These in vitro studies demonstrate that "developing epithelia" were able to tolerate gradual dilution of apical media, the remarkable barrier properties of gill epithelia, and the importance of cortisol and prolactin in promoting integrity of this barrier during FW adaptation.  相似文献   

16.
In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes.  相似文献   

17.
The mechanism of Pb-induced disruption of Na(+) and Cl(-) balance was investigated in the freshwater rainbow trout (Oncorhynchus mykiss). Na(+) and Cl(-) influx rates were reduced immediately in the presence of 2.40 +/- 0.24 and 1.25 +/- 0.14 muM Pb, with a small increase in efflux rates occurring after 24-h exposure. Waterborne Pb caused a significant decrease in the maximal rate of Na(+) influx without a change in transporter affinity, suggesting a noncompetitive disruption of Na(+) uptake by Pb. Phenamil and bafilomycin markedly reduced Na(+) influx rate but did not affect Pb accumulation at the gill. Time-course analysis in rainbow trout exposed to 0, 0.48, 2.4, and 4.8 microM Pb revealed time- and concentration-dependent branchial Pb accumulation. Na(+)-K(+)-ATPase activity was significantly reduced, with 4.8 microM exposure resulting in immediate enzyme inhibition and 0.48 and 2.4 microM exposures inhibiting activity by 24 h. Reduced activity was weakly correlated with gill Pb accumulation after 3- and 8-h exposures; this relationship strengthened by 24 h. Reduced Na(+) uptake was correlated with gill Pb burden after exposures of 3, 8, and 24 h. Immediate inhibition of branchial carbonic anhydrase activity occurred after 3-h exposure to 0.82 +/- 0.05 or 4.30 +/- 0.05 microM Pb and continued for up to 24 h. We conclude that Pb-induced disruption of Na(+) and Cl(-) homeostasis is in part a result of rapid inhibition of carbonic anhydrase activity and of binding of Pb with Na(+)-K(+)-ATPase, causing noncompetitive inhibition of Na(+) and Cl(-) influx.  相似文献   

18.
Isolated mitochondria-rich (MR) cells from the rainbow trout gill epithelium were subjected to intracellular pH (pH(i)) imaging with the pH-sensitive dye BCECF-AM. MR cells were categorized into two distinct functional subtypes based on their ability to recover pH(i) from an NH(4)Cl-induced acidification in the absence of Na(+). An apparent link between resting pH(i) and Na(+)-independent pH(i) recovery was made. We observed a unique pH(i) acidification event that was induced by extracellular Na(+) addition. This further classified the mixed MR cell population into two functional subtypes: the majority of cells (77%) demonstrated the Na(+)-induced pH(i) acidification, whereas the minority (23%) demonstrated an alkalinization of pH(i) under the same circumstances. The focus of this study was placed on the Na(+)-induced acidification and pharmacological analysis via the use of amiloride and phenamil, which revealed that Na(+) uptake was responsible for the intracellular acidification. Further experiments revealed that pH(i) acidification could be abolished when Na(+) was allowed entry into the cell, but the activity of an electrogenic Na(+)-HCO(3)(-) cotransporter (NBC) was inhibited by DIDS. The electrogenic NBC activity was supported by a DIDS-sensitive, Na(+)-induced membrane potential depolarization as observed via imaging of the voltage-sensitive dye bis-oxonol. We also demonstrated NBC immunoreactivity via Western blotting and immunohistochemistry in gill tissue. We propose a model for transepithelial Na(+) uptake occurring via an apical Na(+) channel linked to a basolateral, electrogenic NBC in one subpopulation of MR cells.  相似文献   

19.
A time course analysis using (110m)Ag, (24)Na(+), and (36)Cl(-) examined gill silver accumulation and the mechanism by which waterborne silver (4.0 x 10(-8) M; 4.3 microg/l) inhibits Na(+) and Cl(-) uptake in gills of freshwater rainbow trout. Analyses of gill and body fluxes allowed calculation of apical uptake and basolateral export rates for silver, Na(+), and Cl(-). To avoid changes in silver bioavailability, flow-through conditions were used to limit the buildup of organic matter in the exposure water. For both Na(+) and Cl(-) uptake, apical entry, rather than basolateral export, was the rate-limiting step; Na(+) and Cl(-) uptake declined simultaneously and equally initially, with both uptakes reduced by approximately 500 nmol.g(-1).h(-1) over the 1st h of silver exposure. There was a further progressive decline in Na(+) uptake until 24 h. Carbonic anhydrase activity was inhibited by 1 h, whereas Na(+)-K(+)-ATPase activity was not significantly inhibited until 24 h of exposure. These results indicate that carbonic anhydrase inhibition can explain the early decline in Na(+) and Cl(-) uptake, whereas the later decline is probably related to Na(+)-K(+)-ATPase blockade. Contrary to previous reports, gill silver accumulation increased steadily to a plateau. Despite the rapid inhibition of apical Na(+) and Cl(-) uptake, apical silver uptake (and basolateral export) increased until 10 h, before decreasing thereafter. Thus silver did not inhibit its own apical uptake in the short term. These results suggest that reduced silver bioavailability is the mechanism behind the pattern of peak and decline in gill silver accumulation previously reported for static exposures to silver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号