首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
AIM: The aim of this work was to construct a Zymomonas mobilis mutant capable of simultaneous ethanol and ice nuclei production from agricultural by-product such as sugar beet molasses, in steady-state continuous culture. METHODS AND RESULTS: A sucrose-hypertolerant mutant of Z. mobilis strain CP4, named suc40, capable of growing on 40% (w/v) sucrose medium was isolated following N-methyl-N'-nitro-N-nitrosoguanidine treatment. Plasmid pDS3154 carrying the inaZ gene of Pseudomonas syringae was conjugally transferred and expressed in suc40. The potential for simultaneous ethanol and bacterial ice nuclei production was assessed in steady-state continuous cultures over a range of dilution rates from 0.04 to 0.13 h(-1). In addition, the fatty acid and phospholipid profile of the three strains was also investigated. Ethanol production up to 43 g l(-1) was achieved at dilution rates below 0.10 h(-1) in sugar beet molasses. Ice nucleation activity gradually increased with increasing dilution rate and the greatest activity, -3.4 log (ice nuclei per cell), was observed at the highest dilution rate (0.13 h(-1)). Both mutant strains displayed a different fatty acid and phospholipid profile compared with the wild-type strain. CONCLUSIONS: The ability of the mutant and recombinant plasmid-containing strains to grow on high sugar concentrations and in high osmotic pressure environments (molasses) can be attributed to their phospholipid and fatty acid contents. SIGNIFICANCE AND IMPACT OF THE STUDY: Taking into account that sugar beet molasses is a low cost agricultural by-product, the simultaneous ethanol and bacterial ice nucleation production achieved under the studied conditions is considered very promising for industrial applications.  相似文献   

2.
Fourteen lactose-fermenting strains of Kluyveromyces marxianus , including its anamorph, Candida kefyr , were grown in two media containing 20% (w/v) sugar as either beet molasses or cheese whey. Strain NBRC 1963 of K. marxianus converted sucrose and lactose to ethanol in both media most efficiently. However, ethanol was produced from sucrose and not from lactose by strain NBRC 1963 in the medium containing equal amounts of sugar from beet molasses and cheese whey. The spontaneous mutants resistant to 2-deoxyglucose in the minimal medium composed of galactose as the sole carbon source were isolated from strain NBRC 1963. Among them, strain KD-15 vigorously produced ethanol in the media containing beet molasses, cheese whey, or both. The mutant strain KD-15 was insensitive to catabolite repression, as shown by the observation that β-galactosidase was not repressed in the presence of sucrose from beet molasses.  相似文献   

3.
Levan is a homopolymer of fructose with many outstanding properties like high solubility in oil and water, strong adhesiveness, good biocompatibility, and film-forming ability. However, its industrial use has long been hampered by costly production processes which rely on mesophilic bacteria and plants. Recently, Halomonas sp. AAD6 halophilic bacteria were found to be the only extremophilic species producing levan at high titers in semi-chemical medium containing sucrose, and in this study, pretreated sugar beet molasses and starch molasses were both found to be feasible substitutes for sucrose. Five different pretreatment methods and their combinations were applied to both molasses types. Biomass and levan concentrations reached by the Halomonas sp. AAD6 cells cultivated on 30 g/L of pretreated beet molasses were 6.09 g dry cells/L and 12.4 g/L, respectively. When compared with literature, Halomonas sp. was found to stand out with its exceptionally high levan production yields on available fructose. Molecular characterization and monosaccharide composition studies confirmed levan-type fructan structure of the biopolymers. Rheological properties under different conditions pointed to the typical characteristics of low viscosity and pseudoplastic behaviors of the levan polymers. Moreover, levan polymer produced from molasses showed high biocompatibility and affinity with both cancerous and non-cancerous cell lines.  相似文献   

4.
After crude protein of the marine yeast strains maintained in this laboratory was estimated by the method of Kjehldahl, we found that the G7a strain which was identified to be a strain of Cryptococcus aureus according to the routine identification and molecular methods contained high level of protein and could grow on a wide range of carbon sources. The optimal medium for single-cell protein production was seawater containing 6.0 g of wet weight of Jerusalem artichoke extract per 100 ml of medium and 4.0 g of the hydrolysate of soybean meal per 100 ml of medium, while the optimal conditions for single-cell protein production were pH 5.0 and 28.0°C. After fermentation for 56 h, 10.1 g of cell dry weight per liter of medium and 53.0 g of crude protein per 100 g of cell dry weight (5.4 g/l of medium) were achieved, leaving 0.05 g of reducing sugar per 100 ml of medium and 0.072 g of total sugar per 100 ml of medium total sugar in the fermented medium. The yeast strain only contained 2.1 g of nucleic acid per 100 g of cell dry weight, but its cells contained a large amount of C16:0 (19.0%), C18:0 (46.3%), and C18:1 (33.3%) fatty acids and had a large amount of essential amino acids, especially lysine (12.6%) and leucine (9.1%), and vitamin C (2.2 mg per 100 g of cell dry weight). These results show that the new marine yeast strain was suitable for single-cell protein production.  相似文献   

5.
Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.  相似文献   

6.
Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.  相似文献   

7.
Metabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.  相似文献   

8.
A flocculent killer yeast, Saccharomyces cerevisiae strain H-1, which was selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentation test of beet molasses indicated that the ethanol productivity and sugar consumption were improved by strain M-9 compared to the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/l, and the concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-1 and strain W-9 at the end of fermentation of beet molasses.  相似文献   

9.
The diatom Phaeodactylum tricornutum produces large quantities of lipids, especially triacylglycerols (TAGs) under nitrogen or phosphorus limitation. In this study, production of lipids and TAGs during this process was compared under conditions with different inputs of inorganic carbon. With an abundant supply of inorganic carbon, considerable accumulation of biomass, lipids, and TAGs was identified after a nitrogen/phosphorus-limiting “induction incubation.” TAGs were still synthesized and accumulated even under inorganic carbon limitation with a cessation in the production of biomass and cellular lipids. This part of accumulated TAGs could be synthesized through recycling and transformation of other lipids such as glycolipids and phospholipids. Additionally, some alterations in the fatty acid profile following TAG accumulation were found. The content of the C16:0 fatty acid increased with decreases in C16:3 and C20:5, which could have been caused by enzymatic selectivity for these fatty acids during the process of TAG synthesis. It was concluded that nitrogen and phosphorus metabolism regulates the synthesis of TAG, while carbon metabolism promotes it by providing sufficient substrates.  相似文献   

10.
Summary Azotobacter vinelandii UWD produced very high molecular weight (MW) (approx. 4 million Daltons) poly--hydroxybutyrate (PHB) when grown in 5% w/v beet molasses medium. The polymer MW decreased as the beet molasses concentration was increased. Similar results were obtained in equivalent concentrations of sucrose (as raw sugar), but the polymer MW was not greater than 1.6 million. This difference was not caused by more severe oxygen-limitation in the beet molasses medium. It appeared that the nonsugar components of beet molasses promoted the formation of higher MW polymer. Fish peptone, a known PHB-yield-promoter in this organism, did not promote the formation of very high MW polymer.  相似文献   

11.
The production of enriched fructose syrups and ethanol from beet molasses using Saccharomyces cerevisiae ATCC 36858 was studied. In batch experiments with a total sugar concentration between 94.9 and 312.4 g/L, the fructose yield was above 93% of the theoretical value. The ethanol yield and volumetric productivity in the beet molasses media with sugar concentration below 276.2 g/L were in the range of 59-76% of theoretical value and between 0.48 and 2.97 g of ethanol/(L x h), respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 242.0 g/L. Some oligosaccharides and glycerol were also produced in all tested media. Raffinose and the produced oligosaccharides were completely consumed by the end of the fermentation process when the total initial sugar concentration was below 190.1 g/L. The glycerol concentration was below 16.1 g/L. The results could be useful for a potential industrial production of ethanol and high-fructose syrup from sugar beet molasses.  相似文献   

12.
Zhu LY  Zong MH  Wu H 《Bioresource technology》2008,99(16):7881-7885
Effects of medium components and culture conditions on biomass and lipid production of Trichosporon fermentans were studied. The optimal nitrogen source, carbon source and C/N molar ratio were peptone, glucose and 163, respectively. The favorable initial pH of the medium and temperature were 6.5 and 25 degrees C. Under the optimized conditions, a biomass of 28.1 g/l and a lipid content of 62.4% could be achieved after culture for 7 days, which were much higher than the original values (19.4 g/l and 50.8%) and the results reported by other groups. T. fermentans could grow well in pretreated waste molasses and a lipid yield of 12.8 g/l could be achieved with waste molasses of 15% total sugar concentration (w/v) at pH 6.0, representing the best result with oleaginous microorganisms on agro-industrial residues. Addition of various sugars to the pretreated molasses could efficiently enhance the accumulation of lipid and the lipid content reached as high as above 50%. Similar to vegetable oils, the lipid mainly contains palmitic acid, stearic acid, oleic acid and linoleic acid and the unsaturated fatty acids amount to about 64% of the total fatty acids. The microbial oil with an acid value of 5.6 mg KOH/g was transesterified to biodiesel by base catalysis after removal of free fatty acids and a high methyl ester yield of 92% was obtained.  相似文献   

13.
Sources of carbohydrate nutrition such as sucrose, glucose, and galactose, with the exception of arabinose, were shown to influence positively callus growth and polysaccharide (pectin silenan and acidic arabinogalactan) biosynthesis. Galactose was found to cause a stimulatory effect on yield and productivity of arabinogalactan. Low concentrations of sucrose failed to support the cell growth and polysaccharide biosynthesis. Increasing sucrose concentrations led to biomass accumulation but failed to enhance efficiency of the substrate utilization. The optimal medium for the campion cell culture growth was found to be one containing 30 g/liter of sucrose or a mixture of sucrose with glucose (in 15 g/liter). Increasing sucrose concentrations in the medium from 30 to 100 g/liter failed to significantly influence the polysaccharide yields while the polysaccharide productivity per liter of the medium grew due to promotion of culture productivity in biomass. Variations of the carbon sources in the nutrient media were shown to influence insignificantly the biochemical characteristics of arabinogalactan and silenan while an increase in the sucrose concentration to 50-100 g/liter led to a diminution of the galacturonic acid content in silenan and to changes in contents of the neutral monosaccharide residues in silenan and arabinogalactan.  相似文献   

14.
The effects of positional distribution of triacylglycerol (TAG) fatty acids to TAG structures in chylomicrons and VLDL, and to postprandial lipemia, were studied in 10 healthy premenopausal women using a 6-h oral fat load test and a randomized, double-blind cross-over design. Molecular level information of TAG regioisomerism was obtained with a tandem mass spectrometric method. The positional distribution of fatty acids in chylomicron TAGs was similar to the respective dietary fat; 79% of the analyzed regioisomers in palm oil and 84% of the analyzed regioisomers in transesterified oil were found in chylomicron TAGs 3 h after the oral fat loads. VLDL TAGs were equal after the two fat loads in all but one regioisomer. Similarities in the fatty acid compositions of chylomicron TAGs suggest that palmitic acid was absorbed equally from both test fats. The proportion of palmitoleic acid in the chylomicrons was increased. Fat with palmitic acid predominantly in the sn-1 and sn-3 positions caused a larger incremental area of total TAGs in plasma and reduced plasma insulin values at the beginning of the postprandial response (0-90 min) compared with fat with palmitic acid randomly distributed. The relationship between TAG molecular structures in dietary fats and in lipoproteins provides new means for understanding the effects of fatty acid positional distribution on human lipid metabolism.  相似文献   

15.
The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.  相似文献   

16.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

17.
Lipid accumulation by Gordonia sp. DG using sodium gluconate as carbon source in comparison with Rhodococcus opacus PD630 was studied. Maximum lipid content 80% was observed at the beginning of the stationary phase for R. opacus and 72% at the end of stationary phase for Gordonia sp. Different agro-industrial wastes were used as carbon source. The cells of the two organism accumulated lipid more than 50% of the biomass with most tested agro-industrial wastes. The maximum value was in presence of sugar cane molasses (93 and 96%) for R. opacus and Gordonia sp. respectively. Maximum triacyglycerols (TAGs), 88.9 and 57.8 mg/l, was obtained using carob and orange waste by R. opacus and Gordonia sp. respectively. The use of orange waste as carbon source by R. opacus, increased lipid unsaturation with C18:3 as the major unsaturated fatty acid. On the other hand, C22:0 and C6:0 were the dominant fatty acids (54.5% of the total identified fatty acids) produced by Gordonia sp. in presence of orange waste as carbon source. Statistical optimization of the medium revealed that maximum lipid content was achieved with 60% orange waste, 0.05 g/l ammonium chloride and 0.2 g/l magnesium sulphate.  相似文献   

18.
The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; K(La) in the fermentors, 0.41 mmoles of O(2) per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content.  相似文献   

19.
20.
The aim of the present study was to evaluate the suitability of low-cost carbon sources for bacteriocin production by Leuconostoc mesenteroides strain E131. For this purpose, inexpensive sugars derived from a sugar refinery plant (glucose, fructose and sucrose) as well as waste molasses were utilized as carbon sources in submerged shake-flask experiments and the kinetic response of the microorganism was evaluated. Interestingly, in the case of molasses, non-negligible decolorization-detoxification (up to ~27%) of the residue was performed together with the production of bacteriocin. In all instances the initial concentration of sugars employed was adjusted at 20 and 30 g/L, therefore the effect of both the nature and the initial quantity of sugar upon the growth of the microorganism was assessed. All media proved to be suitable for both biomass and bacteriocin production by L. mesenteroides, whereas variable quantities of lactate, acetate and ethanol were detected into the medium. Employment of fructose, sucrose or molasses as carbon sources resulted in the accumulation of mannitol (in some cases in significant quantities) into the medium; remarkable portion thus of the available or released fructose acted as electron acceptor instead of carbon source by the microorganism. The highest bacteriocin production achieved (=640 AU/mL) was obtained when initial glucose at 30 g/L was used as substrate. Finally, utilization of waste molasses as carbon source by L. mesenteroides resulted in satisfactory bacteriocin production (up to 320 AU/mL) besides the decolorization of the residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号