首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Basic fibroblast growth factor (bFGF) is a well-characterized peptide hormone that has mitogenic activity for various cell types and elicits a characteristic set of responses on the cell types investigated. In this report we confirmed that bFGF is a potent mitogen for rat brain-derived oligodendrocyte (OL) precursor cells as well as for differentiated OL in secondary culture. bFGF was shown to induce expression of the protooncogene c-fos in OL. The role of protein kinase C (PKC) in mediating bFGF-stimulated proliferation as well as c-fos expression in OL was investigated. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated c-fos expression but did not trigger cell proliferation. When PKC was down-regulated by pretreatment of OL with PMA for 20 h, the bFGF-mediated stimulations of OL proliferation and c-fos mRNA expression were still observed, whereas the induction of c-fos mRNA by PMA was totally inhibited. These data demonstrate that the bFGF mitogenic signaling pathway in OLs does not require PKC. On the other hand, bFGF was found to stimulate specifically the phosphorylation of a limited number of PKC substrates in oligodendroglial cells, including the MARCKS protein. The bFGF-dependent phosphorylation of MARCKS protein was totally inhibited when PKC was first down-regulated, indicating that the phosphorylation of this protein is PKC dependent. Tryptic digestion of the phosphorylated MARCKS protein revealed that bFGF stimulated specifically the phosphorylation of the MARCKS protein on a single phosphopeptide. We provide evidence that bFGF also stimulated fatty acylation of the MARCKS protein, which might explain the observed specific bFGF-dependent phosphorylation of this protein in OL. We propose that bFGF-dependent fatty acylation and phosphorylation of the MARCKS protein are not essential for the transduction of the bFGF mitogenic signal but are probably linked to differentiation processes elicited by bFGF on OL.  相似文献   

4.
The proto-oncogenes c-fos and c-jun have been shown in numerous model systems to be induced within minutes of growth factor stimulation, during the G0/G1 transition. In this report we use the mitotic shake-off procedure to generate a population of highly synchronized Swiss 3T3 cells. We show that both of these immediate-early, competence genes are also induced during the M/G1 transition, immediately after completion of mitosis. While c-fos mRNA levels drop to undetectable levels within 2 hr after division, c-jun mRNA levels are maintained at a basal level which is ~ 30% maximum throughout the remainder of G1. In order to access the functional significance of these patterns of c-fos and c-jun expression, antisense oligodeoxynucleotides specific to c-fos or c-jun were added to either actively growing Swiss 3T3 cells or mitotically synchronized cells, and their ability to inhibit DNA synthesis and cell division determined. Our results show that treatment of Swiss 3T3 cells with either c-fos or c-jun antisense oligodeoxynucleotides, while actively growing, during mitosis, or in early G1, results in a reduction in ability to enter S and subsequently divide. This was also true if Swiss 3T3 cells were treated during mid-G1 with c-jun antisense oligodeoxynucleotides. These results demonstrate that the regulation of G1 progression following mitosis is dependent upon the expression and function of the immediate-early, competence proto-oncogenes c-fos and c-jun. © 1994 Wiley-Liss, Inc.  相似文献   

5.
6.
There is little known about the regulation of gene expression in rat parotid glands after exposure to ionizing radiation. The present studies investigate the effects of in vivo ionizing radiation, with subsequent stimulation of beta-adrenergic receptors by isoproterenol, on parotid gland function and on the expression of the early response genes, c-fos, c-jun, and jun B. Ionizing radiation diminished parotid gland weight and saliva output. Treatment of irradiated rats with isoproterenol increased the gland weight to levels similar to those in nonirradiated rats. However, such treatment had no effect on saliva output as indicated by measurements of parotid salivary flow rate. Irradiation alone increased the expression of c-fos, c-jun, and jun B. The combination of irradiation and isoproterenol had an additional effect on the levels of c-fos and jun B mRNAs and proteins particularly at earlier experimental times (1 to 8 h). Isoproterenol alone induced high levels of c-fos and jun B mRNA but not of c-jun mRNA. However, c-jun mRNA was induced markedly by radiation and 8 h of isoproterenol treatment, indicating a combined effect on c-jun gene expression. These observations suggest that the expression of the proto-oncogenes c-fos, c-jun, and jun B is probably regulated through differential signal transduction pathways which may be activated by these external stimuli and may be associated with functional changes induced in the rat parotid gland by ionizing radiation and by ionizing radiation and isoproterenol.  相似文献   

7.
8.
Treatment of the quiescent, chemically transformed Balb/c mouse 3T3 cells (BP-A31) with fibroblast growth factor (FGF) leads to reinitiation of the cell division cycle in a large proportion of the cells. The characteristics of the mitogenic action of FGF closely resemble those of phorbol esters (activators of protein kinases type C) and differ from those of insulin (mediated by insulin-like growth factor 1 receptors). In particular, the effects of FGF as well as of phorbol-2-myristate-13-acetate (PMA), unlike the effects of insulin, are prevented by a low concentration (7.5 nM) of staurosporin (an efficient inhibitor of protein kinase C) as well as by 3-isobutyl-1-methyl xanthin (IBMX). Both FGF and PMA are good inducers of the accumulation of c-fos and c-jun mRNAs, whereas insulin has little effect. However, FGF was fully active (both as a mitogen and as inducer of c-fos mRNA accumulation) also in cells where the protein kinase C-mediated pathway had been downregulated by a long exposure to phorbol dibutyrate. We propose that the mitogenic effect of FGF does not require activation of protein kinase C, but that the subsequent events in the transduction pathways initiated by FGF and PMA, respectively, are (in part) coincident.  相似文献   

9.
10.
11.
The effects of forskolin (FSK) and phobol 12-myristate-13-acetate (PMA) on c-fos and c-jun mRNA expressions in rat C6 glioma cells were studied. Both FSK and PMA increased the c-fos mRNA level. The C-jun mRNA level was decreased by FSK, whereas it was increased by PMA. The elevated c-fos mRNA level, induced by FSK or PMA, was significantly inhibited by dexamethasone (DEX). In contrast, DEX did not affect the FSK- and PMA-induced response of the c-jun mRNA level. Cycloheximide (CHX) caused a superinduction of the FSK- or PMA-induced c-fos mRNA level. Furthermore, CHX also potentiated the PMA-induced c-jun mRNA level. However, CHX did not affect the FSK-induced down-regulation of the c-jun mRNA level. When C6 glioma cells were incubated with PMA and FSK, the PMA-induced c-jun mRNA level was inhibited by FSK, whereas FSK did not affect the PMA-induced c-fos mRNA level. Our results suggest that the activations of PKA and PKC pathways have different roles in the regulation of the c-jun mRNA expression in rat C6 glioma cells. PKA activation can inhibit induction of the c-jun mRNA expression by PMA. In addition, DEX appears to have a selective inhibitory action against c-fos, but not c-jun, -mRNA expression that is regulated by PKA and PKC. On-going protein synthesis inhibition is required for the superinduction of the c-fos expression that is induced by PMA, or FSK and the PMA-induced c-jun mRNA level.  相似文献   

12.
13.
14.
15.
The role of protein kinase C (PKC) in mediating nerve growth factor (NGF) or basic fibroblast growth factor (bFGF)-stimulated SCG10 and c-fos expression as well as neurite outgrowth was studied in PC12 cells. Activators of PKC such as phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl 2-acetyl glycerol mimicked the stimulatory effect of NGF and bFGF on SCG10 mRNA levels. Induction involved a protein synthesis-dependent mechanism and was maximal within 12-24 h of exposure. Chronic treatment of the cells with PMA for up to 8 days resulted in a substantial decrease (approximately 90%) in total PKC activity in the continued presence of PMA. PKC depletion did not affect NGF- or bFGF-stimulated SCG10 mRNA induction and bFGF-stimulated c-fos mRNA induction. However, NGF-stimulated c-fos mRNA induction was attenuated. In addition, induction of neurite outgrowth was not abolished in PKC-depleted cells. The results imply that PKC is not involved in NGF- and bFGF-stimulated SCG10 mRNA induction and neurite outgrowth. Furthermore, while the effect of bFGF on c-fos mRNA induction is PKC-independent, that of NGF is mediated by PKC-dependent and -independent pathways.  相似文献   

16.
We investigated the molecular mechanisms underlying the ability of heparin to inhibit vascular smooth muscle cell (VSMC) growth. Previous experiments have shown that heparin inhibits induction of c-fos and c-myc protooncogene mRNA in rat VSMC stimulated by phorbol 12-myristate 13-acetate (PMA) but not when stimulated by epidermal growth factor (EGF) (Pukac, L. A., Castellot, J. J., Wright, T. C., Caleb, B. L., and Karnovsky, M. J. (1990) Cell Regul. 1, 435-443). The present experiments show that these mitogens activate distinct second messenger pathways in VSMC, because PMA but not EGF induction of c-fos and c-myc mRNA was suppressed in protein kinase C (PKC) down-regulated VSMC; this suggests that EGF does not act through a PKC-dependent pathway for induction of these genes. Heparin inhibited serum stimulation of c-fos mRNA in control VSMC, but heparin did not inhibit the smaller but significant serum stimulation of c-fos mRNA in PKC down-regulated VSMC, indicating that heparin may selectively inhibit PKC-dependent, but not PKC-independent, stimulation of gene expression. To further determine if heparin inhibits non-PKC pathways, VSMC were treated with dibutyryl cAMP, 3-isobutyl-1-methyl-xanthine, and Ca2+ ionophore A23187; stimulation of c-fos mRNA by this treatment was not inhibited by heparin. DNA synthesis and cell proliferation were inhibited in rat VSMC exposed briefly to heparin during the G0/G1 phase of the cell cycle. These experiments indicate heparin can act early in the cell cycle and suggest PKC-dependent but not PKC-independent signaling pathways for gene expression are selectively sensitive to heparin inhibition.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号