首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xing W  Ngo HH  Kim SH  Guo WS  Hagare P 《Bioresource technology》2008,99(18):8674-8678
In this study, the performances of GAC adsorption and GAC bioadsorption in terms of dissolved organic carbon (DOC) removal were investigated with synthetic biologically treated sewage effluent (BTSE), synthetic primary treated sewage effluent (PTSE), real BTSE and real PTSE. The main aims of this study are to verify and compare the efficiency of DOC removal by GAC (adsorption) and acclimatized GAC (bioadsorption). The results indicated that the performance of bioadsorption was significantly better than that of adsorption in all cases, showing the practical use of biological granular activated carbon (BGAC) in filtration process. The most significance was observed at a real PTSE with a GAC dose of 5g/L, having 54% and 96% of DOC removal by adsorption and bioadsorption, respectively. In addition, it was found that GAC adsorption equilibrium was successfully predicted by a hybrid Langmuir-Freundlich model whilst integrated linear driving force approximation (LDFA)+hybrid isotherm model could describe well the adsorption kinetics. Both adsorption isotherm and kinetic coefficients determined by these models will be useful to model the adsorption/bioadsorption process in DOC removal of BGAC filtration system.  相似文献   

2.
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.  相似文献   

3.
AIMS: This study attempted to demonstrate nitrite interference on chemical oxygen demand (COD) determination in piggery wastewater, and the capability of aerobic denitrification of the SU2 strain which is capable of promoting the efficiency of nitrogen and COD removal from piggery wastewater. METHODS AND RESULTS: This study was performed in a 17-litre reactor with a 30% packing ratio, with a ratio of immobilized SU2 cells to sludge of 100:1. The ratio of aeration to nonaeration was 4 : 1.5. Removal efficiency of COD was 86.8%. Removal efficiency of BOD and SS was higher than 90%, and removal efficiency of NH4+-N and TKN was almost 100%. CONCLUSIONS: NO2- -N interference is significant when its concentration in piggery wastewater exceeds 100 mg l-1. COD in piggery wastewater can be indirectly reduced following nitrite reduction by SU2 strain. SIGNIFICANCE AND IMPACT OF THE STUDY: Utilizing immobilized SU2 cells in coordination with an SBR system simultaneously reduces nitrite and COD concentrations.  相似文献   

4.
5.
Granular activated carbon (GAC) beds may be used for removal of dissolved organic matter during the treatment of drinking water. However, they might also change the microbiological quality of the water entering the distribution system either by changing the predominant bacteria or the bacterial density of the treated water. A 3-year pilot plant study of water treatment using GAC beds was conducted at the Baxter Water Treatment Plant in Philadelphia. During the study, bacteria were isolated from the raw water and from the effluents of the GAC treatment units. At the end of the study, bacteria were also isolated from the GAC units and from sand beds operated in parallel with the GAC units. Bacterial genera in the GAC effluents and in the GAC units themselves were similar to those found in the raw water and in the sand beds. Prechlorination and (or) preozonation of the water before GAC treatment had no noticeable effect on the bacterial genera found as compared with GAC unit having no predisinfection. The bacterial genera found in this study were similar to those found in seven other studies of GAC water treatment that used a variety of treatment schemes and a variety of heterotrophic plate count techniques to evaluate bacterial populations. From these several studies it appears that GAC treatment does not change the nature of the bacterial populations associated with drinking water.  相似文献   

6.

Activated sludge is one of the most widely implemented technologies for municipal wastewater treatment. Yet, more restrictive environmental standards demand for more efficient technologies. Aerobic granular sludge (AGS) is a promising alternative in this context since this technology has shown potential for simultaneous organic matter and nutrient removal using smaller bioreactors and consuming less energy. However, despite such engaging claims, only ca. 40 full-scale AGS systems have been installed worldwide after 30 years of development. This reduced implementation suggests the existence of significant bottlenecks for this technology, which currently only have partially been overcome. This overview aims to analyze the recent progress in R&D concerning aerobic sludge granulation for municipal wastewater treatment via the analysis of research articles and invention patents as well as to elucidate exiting technological gaps and development opportunities. Culturing methods aiming at fast granulation, long-term stability and excellent process performance are of utmost interest for promoting massive implementation of full-scale AGS systems. Moreover, the recovery of biomaterials from waste sludge could contribute to the implementation of the biorefinery paradigm in wastewater treatment plants.

  相似文献   

7.
Simultaneous aerobic treatment of COD, phosphate, nitrate and H2S in a synthetic sewage wastewater was carried out using porous ceramic immobilized photosynthetic bacteria, Rhodobacter sphaeroidesS, Rb. sphaeroidesNR-3 and Rhodopseudomonas palustris. In the batch treatment, effective simultaneous removal of COD (89%), phosphate (77%), nitrate (99%) and H2S (99.8%) was observed after 48 h. In semi-continuous treatments with dilution rates of 0.17 to 0.75 day–1under aerobic conditions, simultaneous removal of these four components was also observed after about one month.  相似文献   

8.
This study investigated the adsorption potential of oil palm shell-based activated carbon to remove 2,4,6-trichlorophenol from aqueous solution using fixed-bed adsorption column. The effects of 2,4,6-trichlorophenol inlet concentration, feed flow rate and activated carbon bed height on the breakthrough characteristics of the adsorption system were determined. The regeneration efficiency of the oil palm shell-based activated carbon was evaluated using ethanol desorption technique. Through ethanol desorption, 96.25% of the adsorption sites could be recovered from the regenerated activated carbon.  相似文献   

9.
In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.  相似文献   

10.
As an emerging biotechnology capable of removing contaminants and producing electricity, microbial fuel cells (MFCs) hold a promising future in wastewater treatment. However, several main problems, including the high internal resistance (Rin), low power output, expensive material, and complicated configuration have severely hindered the large-scale application of MFCs. The study targeted these challenges by developing a novel MFC system, granular activated carbon single-chamber MFC, termed as GAC-SCMFC. The batch tests showed that GAC was a good substitute for carbon cloth and GAC-SCMFCs generated high and stable power outputs compared with the traditional two-chamber MFCs (2CMFCs). Critical operational parameters (i.e. wastewater substrate concentrations, GAC amount, electrode distance) affecting the performance of GAC-SCMFCs were examined at different levels. The results showed that the Rin gradually decreased from 60 Ω to 45 Ω and the power output increased from 0.2 W/m3 to 1.2 W/m3 when the substrate concentrations increased from 100 mg/L to 850 mg/L. However, at high concentrations of 1000–1500 mg/L, the power output leveled off. The Rin of MFCs decreased 50% when the electrode distance was reduced from 7.5 cm to 1 cm. The highest power was achieved at the electrode distance of 2 cm. The power generation increased with more GAC being added in MFCs due to the higher amount of biomass attached. Finally, the multi-anode GAC-SCMFCs were developed to effectively collect the electrons generated in the GAC bed. The results showed that the current was split among the multiple anodes, and the cathode was the limiting factor in the power production of GAC-SCMFCs.  相似文献   

11.
Anaerobic bioreactors supplemented with membrane technology have become quite popular, owing to their favorable energy recovery characteristics. In this study, a lab-scale anaerobic Membrane Bioreactor (AnMBR) was assessed in experimental treatments of pre-settled dilute municipal wastewater obtained from a full-scaled wastewater treatment plant. The MBR system was operated in continuous flow mode for 440 days. To evaluate the performance of the AnMBR under various loading rates, the hydraulic retention time (HRT) was reduced in a stepwise manner (from 2 to 0.5 days). Afterward, the mixed liquor suspended solids (MLSS) were reduced from 7,000 to 3,000 mg/L in increments of 1,000 mg/L, resulting in a decrease in solids retention time (SRT) at a constant HRT of 1.0 day. The soluble chemical oxygen demand (SCOD) concentration in the feed varied between 38 and 131 mg/L, whereas the average permeate SCOD ranged between 18 and 37 mg/L, reflecting excellent effluent quality. The AnMBR performance in terms of COD removal proved stable, despite variations in influent characteristics and HRT and SRT changes. The concentration of extracellular polymeric substance (EPS) was reduced with decreases in HRT from 42 to 22 mg VS/mg of MLSS, thereby indicating that the increased biomass concentration biodegraded the EPS at lower HRTs. AnMBR is, therefore, demonstrably a feasible option for the treatment of dilute wastewater with separate stage nitrogen and phosphorus removal processes.  相似文献   

12.
Lim SJ  Fox P 《Bioresource technology》2011,102(11):6399-6404
In order to evaluate the static granular bed reactor (SGBR), a chemical oxygen demand (COD) balance was used along with a mathematical model. The SGBR was operated with an organic loading rate (OLR) ranging from 0.8 to 5.5 kg/m3 day at 24 °C. The average COD removal efficiency was 87.4%, and the removal efficiencies of COD, carbohydrates, and proteins increased with an OLR, while the lipids removal efficiency was not a function of an OLR. From the results of the COD balance, the yield of biomass increased with an OLR. The SGBR was modeled using the general transport equation considering advection, diffusion, and degradation by microorganisms, and the first-order reaction rate constant was 0.0166/day. The simulation results were in excellent agreement with experimental data. In addition, the SGBR model provided mechanistic insight into why the COD removal efficiency in the SGBR is proportional to an OLR.  相似文献   

13.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

14.

Background, Aims and Scope  

It is clear that a wastewater treatment plant brings about an enhanced quality of wastewater; however, it also implies such environmental side effects as material and energy consumption as well as involving the generation of waste. This study is maintained within the boundaries of a research project that aims at the evaluation, from an environmental perspective, of the most common technical options focused on the removal of the organic matter present in urban wastewater. In particular, the paper presents the results for four centres of population with more than 50,000 inhabitants. The differences present among the facilities on their configurations will allow their comparison and the definition of the less environmentally damaging scheme for the treatment of this type of wastewater.  相似文献   

15.
Abstract

The manometric respirometric method was applied to a characterisation of organic material in pulp and paper mill wastewater, which is usually high in organic content and inhibitory substances. Preliminary tests, including experiments with an extra microbial seed as well as dilution series, were carried out before the characterisation analyses in order to optimise the method. Three different physical-chemical methods were then used to characterise organic fractions. Influent organic fractions were specified with two methods in which the determination of the soluble biodegradable and the soluble inert fraction differed. In the third method, the influent fractions as well as the new metabolic products generated during the biodegradation process and an estimate of the mineralised part of the influent biodegradable fraction were determined without any hypothetical conversion factors. The results showed that a remarkable part of the detected oxygen demand was consumed for the biotransformation of biodegradable fractions into new inert organic products, not only for mineralisation. The amount of these new metabolic products, measured after biochemical oxygen demand analyses, was significant. It was also noticed that volatile organic compounds can have an influence on the chemical oxygen demand value of effluents.  相似文献   

16.
A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.  相似文献   

17.
18.
The continuous increase of human pressure on the environment and the concomitant pollution threat call for more complete and efficient environmental protection systems. Wastewater treatment plants are a technological response to the accumulation of pollution that occurs during the human-dominated phases of water cycle. In recent years, thanks to significant improvements in sewage treatment methodology, a number of upgrades have been assessed to improve the efficiency and functionality of treatment systems. Nonetheless, this activity requires large material and energy consumptions that have to be carefully accounted for when evaluating the efficiency of the process. In this work we present an emergy approach to the evaluation of a wastewater treatment plant located along the Ligurian coast (NW Mediterranean Sea). Besides the evaluation of the water treatment plant system, a preliminary assessment of the environmental costs in terms of natural fluxes required for the treatment process was performed. In fact, at the end of the treatment discharged water is still loaded with substances that have to be adsorbed by the receiving natural system. The work done by nature assimilating this load is generally considered as free while it is counted as a further cost in the total emergy budget of the water purification process.  相似文献   

19.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号