首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacology of leukotrienes (LT) C4 and D4 in isolated airway smooth muscle was investigated. In rat trachea, neither LTC4 or D4 elicited a response. In contrast, LTC4 was a potent contractile agonist in guinea-pig trachea, bronchus and parenchymal lung strip. Similar effects were obtained with LTD4 in trachea and parenchyma. In trachea and bronchus, the concentration-response curve to LTC4 was biphasic: indomethacin converted the biphasic response curve to a simple sigmoidal shape and enhanced the maximum contractile response. The SRS-A antagonist FPL 55712 antagonized the effect of LTD4 in both trachea and parenchyma. As regards LTC4-induced contraction of trachea and bronchus, FPL 55712, depending on concentration, either antagonized, or antagonized and enhanced the maximum contractile response. The enhancement of the maximum contractile response by FPL 55712 was not apparent when indomethacin was present. FPL 55712 failed to antagonize the effect of LTC4 in parenchyma.  相似文献   

2.
Aerosol LTD4-induced bronchoconstriction in anesthetized, spontaneously breathing guinea pigs was potentiated by either pretreatment with propranolol or bilateral adrenalectomy, whereas bilateral vagotomy did not affect the LTD4 response. The dose-response curve describing LTD4-induced changes in dynamic lung compliance (CDYN) and pulmonary resistance (RL) [as reflective indices of bronchoconstriction] was shifted to the left by approximately 20-fold by propranolol. Against an equal degree of LTD4-induced bronchoconstriction, the leukotriene antagonist, FPL 55712, had an apparent 20-fold greater potency in propranolol-pretreated animals vis a vis saline-treated controls. The duration of action of aerosol FPL 55712 was similar in both propranolol-treated and saline-treated animals. These results demonstrate that aerosol LTD4-induced bronchoconstriction is modulated by an adrenergic compensatory bronchodilator mechanism that is apparently dependent upon the adrenals and independent of vagal influences. Inhibition of the effect of this reflex with propranolol also enhances the apparent potency of an aerosol leukotriene antagonist, FPL 55712, presumably reflecting a constant LTD4 to antagonist ratio in the saline-treated and propranolol-pretreated guinea pigs.  相似文献   

3.
We compared the effects of the leukotriene (LT) D4 receptor antagonist FPL55712 and some lipoxygenase inhibitors on contractions of isolated guinea-pig trachea induced by antigen (ovalbumin, OA) and calcium ionophore A23187 in the presence of the cyclooxygenase inhibitor indomethacin (5 microM), and by arachidonic acid (AA), melittin and LTD4. FPL55712 (0.1 and 1 microM) inhibited contractions induced by AA (100 microM) and the phospholipase A2 activator melittin (3 micrograms/ml), while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 microM) was a more effective inhibitor of the melittin response than the AA response. FPL55712 inhibited contractions induced by OA (100 micrograms/ml) more than by A23187 (1 microgram/ml), and these inhibitory effects of FPL55712 were much less in the presence of l-serine-borate complex (45 mM), an inhibitor of LTC4 conversion to LTD4. NDGA (10 microM) had no significant effect on the OA response, whereas the lipoxygenase inhibitors 1-phenyl-3-pyrazolidone (phenidone, 10 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM) clearly inhibited it. In contrast, NDGA and phenidone inhibited the A23187 response, but ETYA had no effect on it. FPL55712, phenidone and ETYA, but not NDGA, had a large inhibitory effect on LTD4-induced contractions, but these inhibitors had no effect on histamine-induced contractions. These results suggest that in the guinea-pig trachea inhibitors of LTD4-induced contractions decrease antigen-induced contractions, whereas lipoxygenase inhibitors reduce the contraction to A23187.  相似文献   

4.
Arachidonate metabolites are potent biological mediators affecting multiple cellular functions. Although prostaglandins of the E series, which are products of the cyclooxygenase pathway, have been known as inhibitors or down-regulators of fibroblast proliferation and collagen synthesis, the more recently discovered products of the 5-lipoxygenase pathway have not been as extensively investigated with regard to fibroblast function. In this study, a sulfidopeptide product of the lipoxygenase pathway, leukotriene C4 (LTC4), was examined for its ability to modulate rat lung fibroblast collagen synthesis and proliferation in vitro. The data revealed the ability of LTC4 and to a lesser extent leukotriene D4 (LTD4) to stimulate collagen synthesis in a dose-dependent (10(-11)-10(-8) M) manner without affecting cellular proliferation as determined by radiolabeled thymidine incorporation; 1 nM LTC4 caused an 85% (p less than 0.02) increase above untreated controls in [3H]proline incorporation into collagenous protein in the media, which was blocked by the putative leukotriene receptor antagonist FPL55712 (10 microM) and inhibited by cycloheximide and actinomycin D. This LTC4 stimulatory effect was slightly more specific for collagen synthesis vs noncollagenous protein synthesis but was not accompanied with any change in the collagen type composition. Binding of [3H]LTC4 to these cells was specific, reversible, and saturable, with a Kd of 1.8 +/- 0.95 nM. Under equilibrium conditions, there was an estimated 2.39 X 10(4) receptors per cell. This binding was also inhibited by 10 microM FPL55712. Competitive binding studies show specificity of this binding for LTC4 relative to LTD4 and FPL55712. Furthermore, no significant conversion of LTC4 to LTD4 or leukotriene E4 was noted during the binding studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Differential activity of leukotrienes upon human pulmonary vein and artery   总被引:5,自引:0,他引:5  
Responses to leukotrienes B4, C4, D4 and E4 were examined in human pulmonary artery and pulmonary vein preparations from surgical specimens. Leukotrienes C4 (LTC) and D4 (LTD) were potent contractants of pulmonary vein over the dose range of 10(-10) M to 10(-6) M, whereas they produced minimal contractions of human pulmonary artery only at concentrations of 10(-8) M or greater. Leukotriene E4 was less potent than LTC or LTD, and leukotriene B4 (LTB) at concentrations up to 10(-6) M had no effect upon either pulmonary veins or pulmonary arteries. Contractions of pulmonary vein by LTD were inhibited in a competitive manner by FPL 55712. Dose response characteristics of LTD and inhibition by FPL 55712 were similar for pulmonary venous and bronchial smooth muscle. We conclude that pulmonary vein smooth muscle has leukotriene receptors comparable to those of bronchial smooth muscle whereas pulmonary artery does not.  相似文献   

6.
The biological actions of pure slow-reacting substance of anaphylaxis (SRS-A) from guinea-pig lung, pure slow-reacting substance (SRS) from rat basophilic leukaemia cells (RBL-1) and synthetic leukotrienes C4 (LTC4) and D4 (LTD4) have been investigated on lung tissue from guinea pig, rabbit and rat. In the guinea pig, the leukotrienes released cyclo-oxygenase products from the perfused lung and contracted strips of parenchyma. The effects of SRS-A, SRS and LTD4 were indistinguishable. LTC4 and LTD4 had similar actions although LTD4 was more potent than LTC4. Indomethacin (1 microgram/ml) inhibited the release of cyclo-oxygenase products from perfused guinea-pig lung and caused a marked reduction in contractions of guinea-pig parenchymal strips (GPP) due to LTC4 and LTD4. The residual contraction of the GPP was abolished by FPL 55712 (0.5 - 1.0 microgram/ml). It appears, therefore, that a major part of the constrictor actions of LTC4 and LTD4 in guinea-pig lung are mediated by myotropic cyclo-oxygenase products, i.e. thromboxane A2 (TxA2) and prostaglandins (PGs). In rabbit and rat lung, however, SRS-A, SRS and the leukotrienes were much less potent in contracting parenchymal strips and there was little evidence of the release of cyclo-oxygenase products. FPL 55712 at a concentration of 1 microgram/ml failed to antagonise leukotriene-induced contractions.  相似文献   

7.
Using [3H]-leukotriene C4 ([3H]-LTC4) and [3H]-leukotriene D4 ([3H]-LTD4), specific peptidoleukotriene receptors have been identified in membranes derived from guinea-pig lung. In the presence of 0.1 mM guanyl-5'-yl-imidodiphosphate, which completely inhibits [3H]-LTD4 binding, [3H]-LTC4 binding was protein- and temperature-dependent, reached equilibrium within 15 minutes at 20 degrees C and was reversible. Guanine nucleotides had no effect on the [3H]-LTC4 binding. Competition studies with [3H]-LTC4, peptidoleukotrienes C4, D4, E4 and the peptidoleukotriene antagonist FPL 55712 revealed an order of potency of leukotriene C4 much greater than E4 greater than D4 greater than FPL 55712. [3H]-LTD4 competition studies indicated an order of potency of LTD4 greater than LTE4 greater than LTC4 much greater than FPL 55712. Bioconversion of [3H]-LTC4, as determined by high performance liquid chromatography, was less than 3 percent. The data suggest the guinea-pig lung may contain biochemically distinct receptors for LTC4 and LTD4.  相似文献   

8.
Leukotriene C4 binding to rat lung membranes   总被引:8,自引:0,他引:8  
A high affinity binding site for leukotriene C4 (LTC4), one component of slow reacting substance of anaphylaxis, has been identified in a membrane preparation from rat lung. As measured by a filtration technique, [3H]LTC4 binding was saturable, specific, reversible, and heat-sensitive. In the presence of 20 mM CaCl2, the dissociation constant (KD) was 41 +/- 9 nM and the maximum number of binding sites (Bmax) was 31 +/- 10 pmol/mg of protein. Specificity was demonstrated by competition studies in which LTC4 had a Ki of 40 nM against specifically bound [3H]LTC4, whereas leukotriene D4 (LTD4) had a Ki of 4 microM. The stereoisomers (5R, 6R) LTC4, (5S, 6S) LTC4, and (5R, 6S) LTC4 had Ki values 3-, 15-, and 25-fold higher than that of natural (5S, 6R) LTC4. Leukotrienes E4 and B4, several prostaglandins and fatty acids, glutathione, and platelet activating factor were even less effective with Ki values above 10 microM. A slow reacting substance of anaphylaxis antagonist, FPL 55712, which, in some systems, distinguishes LTC4- from LTD4-induced contractions, was a weak competitor with a Ki of 16 microM. Serine-borate complex which inhibits gamma-glutamyl transpeptidase, an enzyme responsible for LTC4 metabolism, did not alter binding. In addition, 100 microM FPL 55712 did not reduce metabolism. These observations suggest that the binding observed for LTC4 may represent association with a physiological receptor for this molecule which has a relatively low affinity for LTD4.  相似文献   

9.
The effect of synthetic leukotriene D4 (LTD4) was evaluated on isolated gastric longitudinal or circular smooth muscle and distal colon of the rat. The concentrations of LTD4, 2.5 X 10(-10)M to 5 X 10(-7)M, evoked minimal to maximal contractile responses. In addition, selected prostaglandins were used to identify the mediator of LTD4-induced contraction of gastric smooth muscle. FPL 55712 inhibited LTD4-induced contractions of gastric longitudinal or circular muscle. Indomethacin inhibited only LTD4-induced contractions of the longitudinal muscle. A combination of FPL 55712 and indomethacin produced greater inhibition of LTD4-induced contractions of longitudinal muscle than either agent alone. However, the same combination of inhibitors showed no greater effect than FPL 55712 alone on LTD4-induced contractions of circular smooth muscle. Unlike PGI2, PGF2, PGA2, or PGD2, PGE2 evoked contraction of the longitudinal muscle and relaxation of the circular muscle of the stomach. The dissimilar effect of PGE2 in the two smooth muscle layers of the rat stomach may signify that PGE2 is the prostaglandin released by LTD4 from the longitudinal and circular gastric muscle. However, the opposing pharmacologic effects following LTD4-induced release of prostaglandins in the circular muscle of the stomach would preclude the appearance of an inhibitory effect of indomethacin in this tissue. In contrast, PGE2 and other prostaglandins contract gastric longitudinal muscle in response to LTD4. Thus, these studies clearly suggest that LTD4 has both a direct and indirect effect on gastric smooth muscle of the rat. Unlike the stomach, LTD4-induced contraction of the distal colon was not inhibited by indomethacin while FPL 55712 antagonized contractions. Thus, these findings indicate a differential mechanism of stimulation of rat gastrointestinal tissue by LTD4.  相似文献   

10.
The contractions elicited by leukotriene (LT) C4 and D4 in isolated guinea pig trachea were characterized under conditions in which LTC4 to LTD4 metabolism was blocked by the presence of 45 mM l-serine-borate complex (SB). The presence of SB caused a shift of the LTC4-concentration-response curve to the left by 7.5-fold, and blocked the bioconversion of LTC4 to LTD4 by the trachea as estimated by HPLC analysis of the LTs present in the tissue bath fluid. The potency of FPL 55712 as an antagonist of the LTC4-induced contractions in the presence of SB was 15-30-fold less than its potency as an antagonist of the LTD4-induced contractions. In contrast, another LT antagonist, SK&F 101132, equally antagonized the contractions elicited by LTC4 and LTD4 in either the presence or absence of SB. The differential antagonism of LTC4 and LTD4 implies the existence of multiple pharmacologic receptors for the LTs. The calcium channel entry blockers, nifedipine and verapamil, at concentrations as high as 10 microM, suppressed the maximal LTC4-induced contraction by no more than 20%, whereas the purported intracellular calcium antagonist, TMB-8, completely suppressed the LTC4 concentration-response curve in the presence of SB, a profile identical to that previously reported for LTD4. Thus, if multiple LT receptors exist, they appear to mobilize calcium in a qualitatively similar fashion following LT stimulation.  相似文献   

11.
The contractile activities of peptide leukotrienes (LT) on isolated spiral strips of ferret trachea were characterized pharmacologically. LTC4 and LTD4 contracted ferret tracheal strips in a concentration-related manner and were 3- to 8-fold more potent than carbachol. In contrast, high concentrations of LTE4 evoked either weak contractions or none at all, whereas LTC4 and D4 were partial agonists compared to carbachol. In tissues which were unresponsive to LTE4, this compound antagonized contractile responses to LTC4 and D4 in an apparently competitive manner: Carbachol-induced contractions were not altered by LTE4. The cyclooxygenase inhibitor, indomethacin (5 microM), LT antagonist, FPL55712 (10 microM), atropine (1 microM), phenoxybenzamine (10 microM), and LTB4 (10 microM) failed to alter LTC4 and D4 concentration-response curves. The results indicate that ferret trachea is sensitive to the contractile activity of LTC4 and LTD4 but not LTE4. The LT-induced contractions appear to be mediated by a direct action of the LT rather than indirectly through release of secondary mediators such as thromboxane, prostaglandin, or acetylcholine. LT receptors in ferret trachea are insensitive to FPL55712 but are antagonized by LTE4.  相似文献   

12.
Leukotrienes constrict smooth muscle and could be important for the regulation of the pulmonary circulation. We examined the production and action of lipoxygenase metabolites in isolated lungs, where we controlled the perfusing fluid used. Arachidonate injected into isolated rat lungs perfused with cell- and protein-free physiological salt solution caused a transient pressor response. Following indomethacin, arachidonate caused a delayed slow pressure rise followed by edema. The lung effluent contracted the guinea pig ileum. High-pressure liquid chromatography (HPLC) analysis of the perfusate demonstrated the presence of leukotrienes (LTC4 and LTD4). Diethylcarbamazine, a leukotriene synthesis inhibitor, prevented the slow pressure rise and edema seen after indomethacin plus arachidonate. In lungs perfused with cell- and protein-free physiological salt solution, LTC4, but not LTD4, caused a transient pressure rise followed by a sustained pressure rise. The sustained rise was abolished by a leukotriene-receptor blocker (FPL 55712) but not by indomethacin. In blood-perfused lungs, LTC4 caused only the transient pressure rise that was not blocked by FPL 55712. In lungs perfused with physiological salt solution containing albumin, LTC4 had no effect. We concluded that 1) perfused nonsensitized rat lungs produced LTC4 and LTD4; 2) LTC4 may be a major pulmonary vasoconstrictor; and 3) albumin binding limits the pressor effect of LTC4.  相似文献   

13.
T Jones  D Denis  R Hall  D Ethier 《Prostaglandins》1983,26(5):833-843
Leukotrienes D4 greater than C4 greater than E4 greater than F4 produced qualitatively similar contractions of guinea-pig trachealis, which were antagonized by the SRS-antagonist FPL-55712. Schild analyses indicated that FPL-55712 when tested in a low concentration range (0.57 - 5.7 X 10(-6) M) was a competitive antagonist of LTC4, LTE4 and LTF4 (slope not significantly different from one). The interaction of FPL-55712 with LTD4 may be noncompetitive (slope less than 1). Comparison of the calculated dissociation constants (-log KB) indicated that FPL-55712 was more effective at blocking LTE4 and LTF4 compared to LTC4 and LTD4. In the presence of higher concentrations of FPL-55712 (1.9 X 10(-5) M) the antagonism of LTC4 became noncompetitive. These findings indicate that important differences exist in the interaction of FPL-55712 with the various peptido leukotrienes in guinea pig trachealis. Discovery of more selective antagonists will be needed to determine if multiple receptor subtypes are present in this tissue.  相似文献   

14.
P Sirois  S Roy  P Borgeat 《Prostaglandins》1983,26(1):91-101
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip in vitro. The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml-1 - 10 ug ml-1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

15.
Responses to leukotrienes B4, C4, D4 and E4 were examined in human pulmonary artery and pulmonary vein preparations from surgical specimens. Leukotrienes C4 (LTC) and D4 (LTD) were potent contractants of pulmonary vein over the dose range of 10−10M to 10−6M, whereas they produced minimal contractions of human pulmonary artery only at concentrations of 10−8M or greater. Leukotriene E4 was less potent than LTC or LTD, and leukotriene B4 (LTB) at concentrations up to 10−6M had no effect upon either pulmonary veins or pulmonary arteries. Contractions of pulmonary vein by LTD were inhibited in a competitive manner by FPL 55712. Dose response characteristics of LTD and inhibition by FPL 55712 were similar for pulmonary venous and bronchial smooth muscle. We conclude that pulmonary vein smooth muscle has leukotriene receptors comparable to those of bronchial smooth muscle whereas pulmonary artery does not.  相似文献   

16.
We have studied the effects of a lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on antagonism of leukotriene (LT) C4-induced contractions of isolated guinea-pig trachea and the results were compared to that of a cyclooxygenase inhibitor indomethacin. NDGA (30 microM) as well as indomethacin (5 microM) inhibited LTC4-induced contractions. But, in the presence of indomethacin NDGA was ineffective to inhibit the LTC4 response, whereas two other lipoxygenase inhibitors, phenidone (3-30 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM), markedly inhibited it. The antagonist action of an LTD4 receptor antagonist FPL55712 against LTC4-induced contractions was significantly reduced by NDGA (10-30 microM), but indomethacin had no effect on it. NDGA possessed the same inhibitory effect on the LTC4 antagonism in the presence of indomethacin, but 0.3 microM phenidone and 1 microM ETYA which did not inhibit the LTC4 response had no effect on it. NDGA also inhibited the relaxant response of isoproterenol on the contraction elicited by 30 nM LTC4, but did not affect those of forskolin and aminophylline. The relaxant response of isoproterenol on the LTC4 response was not inhibited by indomethacin, 0.3 microM phenidone and 1 microM ETYA. In the presence of a gamma-glutamyltranspeptidase inhibitor, L-serine borate (SB, 45 mM), NDGA had no effect on the LTC4 antagonism and the relaxant response of isoproterenol. In contrast, NDGA significantly inhibited the relaxant response of isoproterenol on 30 microM histamine- and 30 microM acetylcholine-induced contractions, but it did not affect the histamine antagonism by a histamine H1-blocker pyrilamine. These results suggest that some putative non-prostanoids are involved in LTC4-induced contractions of guinea-pig trachea and which regulate the effects of LTD4 antagonism and beta-adrenoceptor activation.  相似文献   

17.
To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.  相似文献   

18.
Pulmonary hypertension and foreign body granulomas are recognized sequelae of chronic intravenous drug abuse. We have recently described the development of transient pulmonary hypertension and increased permeability pulmonary edema after the intravenous injection of crushed, suspended pentazocine tablets in both humans and dogs. To determine the role of vasoactive substances in the development of this transient pulmonary hypertension, we measured pulmonary hemodynamics and accumulation of arachidonic acid metabolites in dogs during the infusion of indomethacin, a cyclooxygenase inhibitor, diethylcarbamazine (DEC), a lipoxygenase inhibitor, and FPL 55712, a receptor antagonist for leukotriene C4/D4 (LTC4/D4). Following the intravenous administration of crushed, suspended pentazocine tablets (3-4 mg/kg of body weight), mean pulmonary artery pressure increased from 14 +/- 2 mmHg to 30 +/- 6 mmHg (p less than 0.05) at 60 secs with a concomitant increase in plasma concentrations of 6-keto-PGF1 alpha from 187 +/- 92 pg/ml to 732 +/- 104 pg/ml and thromboxane B2 from 206 +/- 83 pg/ml to 1362 +/- 117 pg/ml (both p less than 0.05). Indomethacin prevented the increase in both cyclooxygenase metabolites, but had no effect on the pulmonary hypertension. In contrast, DEC had no effect on the increase in cyclooxygenase products, but blocked the pulmonary hypertension. FPL 55712 did not effect either the increase in cyclooxygenase metabolites or the pulmonary hypertension. We conclude that the transient pulmonary hypertension, induced by the intravenous injection of crushed, suspended pentazocine tablets, is not mediated by cyclooxygenase products but may be mediated by lipoxygenase product(s) other than LTC4/D4.  相似文献   

19.
The effect of platelet activating factor (PAF), a potent lipid mediator of inflammation, was examined in the induction of airway hyperreactivity to known mediators of anaphylaxis. Concentration-dependent contractions of the isolated guinea-pig trachea to PAF (10(-7)-10(-5) M) were produced and an EC50 value was found to be 7.5 X 10(-7) M. Pretreatment for 30 min with a known PAF inhibitor, CV-3988 (10(-5) or 10(-4) M), produced significant inhibition of PAF contractions; however, at 10(-6) M, CV-3988 had no effect. In the presence of meclofenamic acid (10(-6) M), the concentration-response curve to PAF was shifted significantly upward and to the left. This potentiation could be reversed by pretreating the tissues with the peptidoleukotriene antagonists, FPL 55712 or SK&F 102922 (10(-5) M). Pretreatment with PAF concentrations having essentially no intrinsic activity (10(-8), 10(-7)) significantly enhanced the contraction of guinea-pig trachea to various concentrations of LTD4 and to certain concentrations of a thromboxane mimic (U-46619). Pretreatment with lyso-PAF failed to potentiate the LTD4 response, while pretreatment with CV-3988 reverse the potentiation by PAF of the lower concentrations of LTD4. However, PAF failed to enhance contractions (with or without the presence of meclofenamic acid) to acetylcholine, histamine, PGD2 or LTC4 (in the presence of serine borate). These results indicate a possible role for PAF as a mediator of airway hyperreactivity.  相似文献   

20.
The effect of synthetic leukotrienes on tracheal microvascular permeability   总被引:4,自引:0,他引:4  
The effect of synthetic leukotrienes (LT) C4, D4 and E4 on the permeability of the airway microvasculature to plasma albumin was quantitatively evaluated using an in situ guinea pig tracheal model. Vascular permeability was measured as extravascular albumin content by employing 125I-bovine serum albumin and, in order to correct for blood volume, 51Cr-erythrocytes were used. Intratracheal injection of synthetic LTC4, LTD4 and LTE4 (0.1-1000 ng) produced dose-dependent increases in tracheal extravascular albumin content. The leukotrienes were approximately 100-1000 fold more potent than histamine, although histamine did produce a greater maximal increase in extravascular albumin than the leukotrienes. Methacholine did not increase extravascular albumin content. The microvascular permeability effect of LTD4 was antagonized by FPL 55712 but not by mepyramine; conversely, the effect of histamine was antagonized by mepyramine and not by FPL 55712. Additionally, indomethacin did not alter the LTD4-induced increases in tracheal vascular permeability. These results suggest that the effect of LTD4 on tracheal microvascular permeability is directly mediated and is not the indirect result of cholinergic stimulation, histamine release or de novo synthesis of cyclooxygenase products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号