共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse models are often used to study human genes because it is believed that the expression and function are similar for the majority of orthologous genes between the two species. However, recent comparisons of microarray data from thousands of orthologous human and mouse genes suggested rapid evolution of gene expression profiles under minimal or no selective constraint. These findings appear to contradict non-array-based observations from many individual genes and imply the uselessness of mouse models for studying human genes. Because absolute levels of gene expression are not comparable between species when the data are generated by species-specific microarrays, use of relative mRNA abundance among tissues (RA) is preferred to that of absolute expression signals. We thus reanalyze human and mouse genome-wide gene expression data generated by oligonucleotide microarrays. We show that the mean correlation coefficient among expression profiles detected by different probe sets of the same gene is only 0.38 for humans and 0.28 for mice, indicating that current measures of expression divergence are flawed because the large estimation error (discrepancy in expression signal detected by different probe sets of the same gene) is mistakenly included in the between-species divergence. When this error is subtracted, 84% of human-mouse orthologous gene pairs show significantly lower expression divergence than that of random gene pairs. In contrast to a previous finding, but consistent with the common sense, expression profiles of orthologous tissues between species are more similar to each other than to those of nonorthologous tissues. Furthermore, the evolutionary rate of expression divergence and that of coding sequence divergence are found to be weakly, but significantly positively correlated, when RA and the Euclidean distance are used to measure expression-profile divergence. These results highlight the importance of proper consideration of various estimation errors in comparing the microarray data between species. 相似文献
2.
Rapid rates of evolution can signify either a lack of selective constraint and the consequent accumulation of neutral alleles, or positive Darwinian selection driving the fixation of advantageous alleles. Based on a comparison of 1,350 orthologous gene pairs from human and mouse, we show that the evolution of gene expression profiles is so rapid that it is comparable to that of paralogous gene pairs or randomly paired genes. The expression divergence in the entire set of orthologous pairs neither strongly correlates with sequence divergence, nor focuses in any particular tissue. Moreover, comparing tissue expressions across the orthologous gene pairs, we observe that any human tissue is more similar to any other human tissue examined than to its corresponding mouse tissue. Collectively, these results indicate that, while some differences in expression profiles may be due to adaptive evolution, the levels of divergence are mostly compatible with a neutral mode of evolution, in which a mutation for ectopic expression may rise to fixation by random drift without significantly affecting the fitness. A disturbing corollary of these findings is that knowledge of where the gene is expressed may not carry information about its function. 相似文献
3.
4.
Thomas M. Maynard Daniel W. Meechan Clifford C. Heindel Amanda Z. Peters Robert M. Hamer Jeffrey A. Lieberman Anthony-Samuel LaMantia 《Mammalian genome》2006,17(8):822-832
Non-Mendelian factors may influence central nervous system (CNS) phenotypes in patients with 22q11 Deletion Syndrome (22q11DS,
also known as DiGeorge or Velocardiofacial Syndrome), and similar mechanisms may operate in mice carrying a deletion of one
or more 22q11 gene orthologs. Accordingly, we examined the influence of parent of origin on expression of 25 murine 22q11
orthologs in the developing and mature CNS using single nucleotide polymorphism (SNP)-based analysis in interspecific crosses
and quantification of mRNA in a murine model of 22q11DS. We found no evidence for absolute genomic imprinting or silencing.
All 25 genes are biallelically expressed in the developing and adult brains. Furthermore, if more subtle forms of allelic
biasing are present, they are very small in magnitude and most likely beyond the resolution of currently available quantitative
approaches. Given the high degree of similarity of human 22q11 and the orthologous region of mmChr16, genomic imprinting most
likely cannot explain apparent parent-of-origin effects in 22q11DS. 相似文献
5.
6.
7.
Yokoyama S Hashimoto M Shimizu H Ueno-Kudoh H Uchibe K Kimura I Asahara H 《Gene expression patterns : GEP》2008,8(3):155-160
The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development. 相似文献
8.
Suprabasal layers of the newborn mouse epidermis contain two mRNAs of 2.0 and 2.4 kb which are translated into keratins of 59 and 67 kDa, respectively. To study their expression during development, cDNA sequences corresponding to the 2.0- and the 2.4-kb mRNAs were cloned, characterized by hybridization selection assay, and used as probes to detect keratin sequences in polyadenylated RNA from Day 11, 13, 15, and 17 embryos. In RNA from Day 11 of gestation, two RNAs of 2.8 and 1.8 kb were identified. They were found to have homologies with both epidermal RNAs, suggesting that they are coding for proteins of the keratin family. These two sequences were not detected in sample of later stages. RNAs comigrating with the two epidermal keratin RNAs were identified only in Day 15 and 17 embryos indicating that their expression was induced between Day 13 and 15. Finally, the localization of the 59-kDa keratin mRNA was examined by in situ hybridization. The spinous and granulous cell layers were found to be heavily covered with grains while other regions of the tissue sections were unlabeled. All these results support the hypothesis of a sequential expression of keratins during differentiation of epidermal cells and suggest that proteins related to the keratins expressed specifically in keratinizing cells are expressed earlier during development. 相似文献
9.
Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects 总被引:5,自引:0,他引:5
Gene product distribution is often used to infer developmental similarities and differences in animals with evolutionarily diverse body plans. However, to address commonalties of developmental mechanisms, what is really needed is a method to assess and compare gene function in divergent organisms. This requires mutations eliminating gene function. Such mutations are often difficult to obtain, even in organisms amenable to genetic analysis. To address this issue we have investigated the use of double-stranded RNA interference to phenocopy null mutations. We show that RNA interference can be used to phenocopy mutations of the Deformed orthologues in Drosophila and Tribolium. We discuss the possible use of this technique for comparisons of developmental mechanisms in organisms with differing ontogenies. 相似文献
10.
Background
Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the neurotransmitter γ-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype suggests that this gene may be involved in the normal development of tissues outside of the CNS. Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic analysis of its embryonic expression outside of the nervous system has been performed. The objective of this study was to define additional structures outside of the central nervous system that express Gad1, indicating those structures that may require its function for normal development. 相似文献11.
Kang HS Kim EM Lee S Yoon SR Kawamura T Lee YC Kim S Myung PK Wang SM Choi I 《Genomics》2005,86(5):551-565
Natural killer (NK) cells develop from hematopoietic stem cells (HSCs) in the bone marrow. To understand the molecular regulation of NK cell development, serial analysis of gene expression (SAGE) was applied to HSCs, NK precursor (pNK) cells, and mature NK cells (mNK) cultured without or with OP9 stromal cells. From 170,464 total individual tags from four SAGE libraries, 35,385 unique genes were identified. A set of genes was expressed in a stage-specific manner: 15 genes in HSCs, 30 genes in pNK cells, and 27 genes in mNK cells. Among them, lipoprotein lipase induced NK cell maturation and cytotoxic activity. Identification of genome-wide profiles of gene expression in different stages of NK cell development affords us a fundamental basis for defining the molecular network during NK cell development. 相似文献
12.
Qi Zhang Yumeng Wu Weiyuan Li Jia Wang Huiting Zhou Lei Zhang Qi Liu Liu Ying Hongwei Yan 《Journal of fish biology》2023,102(2):380-394
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching. 相似文献
13.
14.
15.
《Gene expression patterns : GEP》2014,14(1):30-41
Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here revealed that different combinations of histone variant genes are expressed in distinct spermatogenic cell types accompanying the progression of self-renewal and differentiation of SSCs, suggesting a systematic regulatory role histone variants play during spermatogenesis. 相似文献
16.
17.
18.
19.
Calpains are a family of related proteins, originally classified on the basis of their calcium dependence and protease activity. Here we report the mRNA expression patterns during mouse development of the recently identified Capn5, Capn6 and Capn11 genes. The major expression sites of Capn5 during embryogenesis are the developing thymus, sympathetic and dorsal root ganglia. Capn6 mRNA is exclusively expressed during embryogenesis predominantly in developing skeletal and heart muscle overlapping closely with Capn3 expression domains. Expression was also observed in specific cells of the lung, kidney and placenta and in various epithelial cell types where the Capn6 mRNA appeared to be localized within the cell to the basal and apical ends. Capn11 mRNA is restricted exclusively to spermatocytes and only during the later stages of meiosis. 相似文献
20.
Differential expression of decorin and biglycan genes during mouse tooth development. 总被引:4,自引:0,他引:4
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development. 相似文献