首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic determination of iso-cytochromes c in yeast   总被引:15,自引:0,他引:15  
  相似文献   

2.
3.
Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.  相似文献   

4.
We describe a method for the formation of hybrid genes by in vivo recombination between two genes with partial sequence homology. DNA structures consisting of plasmid vector sequences, flanked by the alpha 2 interferon gene on the one side and a portion of the alpha 1 interferon gene (homology about 80%) on the other, were transfected into E. coli SK1592. Appropriate resistance markers allowed the isolation of colonies containing circular plasmids which arose by in vivo recombination between the partly homologous interferon gene sequences. Eleven different recombinant genes were identified, six of which encoded new hybrid interferons not easily accessible by recombinant DNA techniques.  相似文献   

5.
6.
Mitochondrial recombination in yeast is well recognized, yet the underlying genetic mechanisms are not well understood. Recent progress has suggested that mobile introns in mitochondrial genomes (mitogenomes) can facilitate the recombination of their corresponding intron-containing genes through a mechanism known as intron homing. As many mitochondrial genes lack introns, there is a critical need to determine the extent of recombination and underlying mechanism of intron-lacking genes. This study leverages yeast mitogenomes to address these questions. In Saccharomyces cerevisiae, the 3′-end sequences of at least three intron-lacking mitochondrial genes exhibit elevated nucleotide diversity and recombination hotspots. Each of these 3′-end sequences is immediately adjacent to or even fused as overlapping genes with a stand-alone endonuclease. Our findings suggest that SAEs are responsible for recombination and elevated diversity of adjacent intron-lacking genes. SAEs were also evident to drive recombination of intron-lacking genes in Lachancea kluyveri, a yeast species that diverged from S. cerevisiae more than 100 million years ago. These results suggest SAEs as a common driver in recombination of intron-lacking genes during mitogenome evolution. We postulate that the linkage between intron-lacking gene and its adjacent endonuclease gene is the result of co-evolution.  相似文献   

7.
Kobayashi T  Horiuchi T  Tongaonkar P  Vu L  Nomura M 《Cell》2004,117(4):441-453
It is known that mutations in gene SIR2 increase and those in FOB1 decrease recombination within rDNA repeats as assayed by marker loss or extrachromosomal rDNA circle formation. SIR2-dependent chromatin structures have been thought to inhibit access and/or function of recombination machinery in rDNA. We measured the frequency of FOB1-dependent arrest of replication forks, consequent DNA double-strand breaks, and formation of DNA molecules with Holliday junction structures, and found no significant difference between sir2Delta and SIR2 strains. Formal genetic experiments measuring mitotic recombination rates within individual rRNA genes also showed no significant difference between these two strains. Instead, we found a significant decrease in the association of cohesin subunit Mcd1p (Scc1p) to rDNA in sir2Delta relative to SIR2 strains. From these and other experiments, we conclude that SIR2 prevents unequal sister-chromatid recombination, probably by forming special cohesin structures, without significant effects on recombinational events within individual rRNA genes.  相似文献   

8.
Tan FJ  Hoang ML  Koshland D 《PLoS genetics》2012,8(3):e1002633
DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5'→3' resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12-48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer.  相似文献   

9.
10.
11.
During the course of meiotic prophase, intrinsic double-strand breaks (DSBs) must be repaired before the cell can engage in meiotic nuclear division. Here we investigate the mechanism that controls the meiotic progression in Schizosaccharomyces pombe that have accumulated excess meiotic DSBs. A meiotic recombination-defective mutant, meu13Delta, shows a delay in meiotic progression. This delay is dependent on rec12+, namely on DSB formation. Pulsed-field gel electrophoresis analysis revealed that meiotic DSB repair in meu13Delta was retarded. We also found that the delay in entering nuclear division was dependent on the checkpoint rad+, cds1+ and mek1+ (the meiotic paralog of Cds1/Chk2). This implies that these genes are involved in a checkpoint that provides time to repair DSBs. Consistently, the induction of an excess of extrinsic DSBs by ionizing radiation delayed meiotic progression in a rad17(+)-dependent manner. dmc1Delta also shows meiotic delay, however, this delay is independent of rec12+ and checkpoint rad+. We propose that checkpoint monitoring of the status of meiotic DSB repair exists in fission yeast and that defects other than DSB accumulation can cause delays in meiotic progression.  相似文献   

12.
Thomas D. Petes 《Cell》1980,19(3):765-774
  相似文献   

13.
Plasmid construction by homologous recombination in yeast   总被引:82,自引:0,他引:82  
H Ma  S Kunes  P J Schatz  D Botstein 《Gene》1987,58(2-3):201-216
We describe a convenient method for constructing new plasmids that relies on interchanging parts of plasmids by homologous recombination in Saccharomyces cerevisiae. A circular recombinant plasmid of a desired structure is regenerated after transformation of yeast with a linearized plasmid and a DNA restriction fragment containing appropriate homology to serve as a substrate for recombinational repair. The free ends of the input DNA molecules need not be homologous in order for efficient recombination between internal homologous regions to occur. The method is particularly useful for incorporating into or removing from plasmids selectable markers, centromere or replication elements, or particular alleles of a gene of interest. Plasmids constructed in yeast can subsequently be recovered in an Escherichia coli host. Using this method, we have constructed an extended series of new yeast centromere, episomal and replicating (YCp, YEp, and YRp) plasmids containing, in various combinations, the selectable yeast markers LEU2, HIS3, LYS2, URA3 and TRP1.  相似文献   

14.
Electron transfer from yeast ferrous cytochrome c to H2O2-oxidized yeast cytochrome c peroxidase has been studied using flash photoreduction methods. At low ionic strength (mu less than 10 mM), where a strong complex is formed between cytochrome c and peroxidase, electron transfer occurs rather slowly (k approximately 200s-1). However, at high ionic strength where the electrostatic complex is largely dissociated, the observed first-order rate constant for peroxidase reduction increases significantly reaching a concentration independent limit of k approximately 1500 s-1. Thus, at least in some cases, formation of an electrostatically-stabilized complex can actually impede electron transfer between proteins.  相似文献   

15.
16.
17.
18.
19.
Genetic diversity within the DQA genes of the major histocompatibility complex (Mhc) of cattle is characterised by multiple polymorphic loci that can vary in number between haplotypes. Previous analysis of the second exon sequences derived from genomic BoLA DQA3 genes identified two distinct families, DQA3*01 and DQA3*02 . In this report, we describe the nucleotide and predicted amino acid sequences of the entire coding region of three transcribed BoLA DQA3 genes representing each of these families. These data provide additional evidence that the BoLA DQA3 locus is distinct from BoLA DQA1 and BoLA DQA2 . In addition, the amino acid sequence of DQA3 genes from the two families is shown to differ by 35 out of the 254 amino acids. Putative locus-specific amino acid sequence motifs within the transmembrane and intracytoplasmic domains of DQA genes are shown to differ between the DQA3*01 and DQA3*02 genes. Phylogenetic analysis reveals a genetic distance that is considerably larger than that seen between orthologous Mhc allelic families. These data are consistent with either an extremely divergent family of DQA3 genes or an allele at an additional BoLA DQA4 locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号