首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— To demonstrate release of ACh in the absence of inhibition of cholinesterase, slices of cerebral cortex were incubated with [3H]choline, after which they were placed in a tissue bath for superfusion. Hemicholinium (HC-3) increased the spontaneous efflux of [3H]choline. Electrical stimulation at 4/s increased the efflux of [3H]choline to the same extent whether the slices were stimulated early or late during superfusion. The effect of stimulation on efflux of [3H]choline was abolished by tetrodotoxin and by the absence of calcium. The extent of choline efflux resulting from stimulation, as calculated from the specific radioactivity of the incubation medium, was the same when the slices were incubated with 0.1 or 1.0mM choline, but was less with lower concentrations of choline. We conclude that the increased efflux of [3H]choline evoked by stimulation probably originates from stores of [3H]ACh synthetized during incubation.  相似文献   

2.
Abstract— The accumulation of radioactively labelled acetylcholine (ACh) by perfused superior cervical ganglia of cats and by incubated brain slices from rats was studied in the presence of diisopropylphosphorofluoridate. Ganglia accumulated more labelled ACh than an extracellular marker (inulin), but the amount of ACh accumulated did not increase when ACh turnover was increased by preganglionic nerve stimulation. The ACh that accumulated in ganglia was not released when the preganglionic nerve was subsequently stimulated. Sliced cerebral cortex also accumulated labelled ACh but this was not released when the tissue was subsequently exposed to a high K+ medium. Thus accumulated ACh does not appear to mix with releasable transmitter stores. Chronically (7 days) decentralized ganglia lost most of their transmitter store but retained their ability to accumulate labelled ACh. Uptake of ACh by sliced cerebellum was not less than uptake of ACh by sliced cerebral cortex and the amount of ACh accumulated by synaptosomes isolated from cerebellum was similar to the amount of ACh accumulated by synaptosomes isolated from cerebral cortex. It is concluded that ACh uptake is not specifically into cholinergic nerve endings. Hexamethonium reduced ACh uptake by cerebral cortex slices but did not increase the amount of ACh collected from slices stimulated by raised K+.  相似文献   

3.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

4.
Abstract— Free choline and acetylcholine (ACh) in mouse or rat brain were assayed biologically. The subcellular distribution of ACh in brain slices that had been incubated in the presence of eserine was compared to that in control brain; during incubation, the ACh outside nerve endings increased four-fold, the ACh released from synaptosomes by osmotic shock doubled but the ACh bound firmly within nerve endings did not increase. The two nerve ending stores of ACh were labelled to similar specific radioactivities when slices were incubated with [3H]choline, but the specific radioactivity of the ACh formed was much lower than that of the added choline. Tissue incubated in the presence of eserine released choline and ACh into the medium and the tissue levels of both substances increased. Brain tissue exposed to Na+-free medium lost 84 per cent of its ACh and 66 per cent of its free choline; the amounts of both substances returned towards control values during subsequent incubation in a normal-Na+ medium (choline-free). Both the ACh outside nerve endings and the ACh associated with synaptosomes were depleted when tissue was incubated in Na+-free medium.  相似文献   

5.
Abstract— Prisms of rat cerebral cortex incubated without cholinesterase inhibitor showed an increase in ACh content during the first hour of incubation. The effects of adding cholinesterase inhibitors during the second hour depended on the potassium concentration. At 6 mM-K+ there was only a small rise in ACh but when K+ was raised to 25 mM a large increase in ACh content was observed. It is proposed that the increase in ACh is due to the reuptake of released ACh.  相似文献   

6.
Abstract— The effects of hyperosmolal superfusion upon the release of preloaded, radio-labeled GABA has been studied, using both first cortical and first pontine brain slices. GABA release was stimulated with either hyperosmolal Na+ or sucrose superfusion in cortical slices. This stimulated release of radio-labeled GABA was partially Ca2+-dependent in cortical slices. When barium ions replaced Ca2+ in hyperosmolal medium, a similar effect was seen. High concentration of magnesium in Ca2+ -free hyperosmolal medium did not induce stimulation. The increased release of α-aminoisobutyric acid (AIBA), a non-metabolized amino acid induced by hyperosmolality, was not Ca2+-dependent.
GABA release was also stimulated with hyperosmolal sucrose superfusion in pontine slices. The effect of pre-treatment of cortical and pontine slices with β-alanine or L-2,4-diaminobutyric acid (DABA) was used to study the source of exogenous GABA release induced by hyperosmolality. In cortical slices, β-alanine blocked the hyperosmolal release of GABA and also slightly inhibited GABA uptake. DABA did not change hyperosmolal GABA release, although it inhibited GABA uptake. In pontine slices, both DABA and β-alanine inhibited GABA uptake, but were unable to inhibit the hyperosmolal release of GABA.
The data suggest that hyperosmolality causes increased release of GABA from neurons, analogous to that seen with K+-depolarization. AIBA, unlike GABA, is released from brain cells as a non-Ca2+ -dependent response to osmotic equilibration. The observation that pre-treatment with β-alanine inhibits the hyperosmolal release of GABA suggests that hyperosmolality alters glial cell function.  相似文献   

7.
ACETYLCHOLINE SYNTHESIS FROM [2-14C]PYRUVATE IN RAT STRIATAL SLICES   总被引:4,自引:0,他引:4  
Abstract— Rat striatal slices were incubated with [2-14C]pyruvate or [6-14C]glucose as sole carbon source. The method devised to study the accumulation of labelled ACh in tissues and incubating medium in the presence or absence of eserine 200 μM derived from the previous studies of FONNUM (1969) and H emsworth and M orris (1964). Total ACh was estimated by biological assay.
The specific activity of newly synthesized ACh was found to be equal to that of the precursors, even for short incubation times and low substrates concentrations. When slices were incubated with [2-14C]pyruvate and eserine, the spontaneous release of ACh occurred at a constant rate, was not modified by the addition of 2 mM-choline in the medium, and consisted only of newly synthesized transmitter.
The initial rate of ACh synthesis was found to be independent of choline concentration, but dependent on the [2-14C]pyruvate concentration, and reached a maximal value corresponding to about 5 per cent of the measured striatal choline acetyltransferase activity.
The appearance of the so called 'surplus ACh' pool, obtained in the presence of eserine, could be detected only after 30 min and represented 26 per cent of the total tissue ACh content after 180 min of incubation.
In the absence of eserine, tissue ACh levels increased six-fold in 80 min and then remained stable until the end of the incubation period (180 min), if sufficient substrate was provided. The maximal ACh accumulation in slices was independent of both excess of choline and [2-14C]pyruvate.
The 'ACh plateau' represented the attainment of a new dynamic equilibrium, since ACh synthesis could still be stimulated by 30 mM-K+. From these results, it was concluded that ACh synthesis is controlled by a negative feed-back regulation.  相似文献   

8.
Abstract— The present study was undertaken to characterize the cholinergic system of primary cell cultures of mouse and rat CNS.
In confirmation of previous reports, primary cultures were found to contain choline acetyltransferase (ChAc). Furthermore they contain acetylcholine (ACh) as measured by two different bioassays. They also synthesize [3H]ACh from [3H]Choline offered to the cultures.
The formation of [3H]ACh is inhibited in the presence of hemicholinium-3 (10−6 m ) to 50% or ouabain (10−3 m ) to 20% of the values found in untreated cultures. Omission of Na + from the incubation solution also diminishes the [3H]ACh formation of the cells.
[3H]ACh is released upon depolarisation by K+ ions in a concentration dependent manner. The release can be prevented by lack of Ca2+ ions in the incubation solution.  相似文献   

9.
Abstract— Guinea pig cerebral cortex slices were incubated for 60 min in a medium containing [3H]choline with or without the addition of 33 mM-KCl for the last 30 min. KC1 caused the release into the medium of large amounts of both bioassayable and radioactive ACh, while at the same time their concentrations in the tissue decreased. The specific activity (d.p.m./pmol) of the ACh released by KC1 was greater than that released in control incubations, indicating that it comes from a newly synthesized, more radioactive store. The amounts of [3H]choline, [3H]ACh and the specific activity of tissue acetylcholine reached a plateau in the tissue 30 min after the addition of isotope. However isotopic equilibrium was not achieved because the specific activity of the ACh released, with or without KC1 in the subsequent 30 min, was less than the specific activity of the ACh remaining in the tissue. This implies the existence of a pool of ACh in the tissue which is turning over very slowly or is being synthesized from a less radioactive pool of choline. This pool of ACh does not contribute substantially to that released by KC1. Levorphanol at 10−3 M, as well as the analgesically inactive stereoisomer, dextrorphan, blocked the KCl-stimulated release of both bioassayable and radioactive ACh. These drugs demonstrate the coupling of synthesis and release of ACh in cerebral cortex slices.  相似文献   

10.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

11.
Abstract: The effects of (-)-hydroxycitrate (OHC) and citrate on the concentration of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh) in the tissue and on the release of ACh into the medium were investigated in experiments on slices of rat caudate nuclei incubated in media with 6.2 or 31.2 m M K+, 0 or 2.5 mM Ca2+, and 0, 1, or 10 m M EGTA. OHC diminished the concentration of acetyl-CoA in the slices under all conditions used: in experiments with 2.5 m M OHC, the concentration of acetyl-CoA was lowered by 25-38%. Citrate, in contrast, had no effect on the level of acetyl-CoA in the tissue. Although both OHC and citrate lowered the concentration of ACh in the slices during incubations with 6.2 m M K+ and 1 m M EGTA, they had different effects on the content of ACh during incubations in the presence of Ca2+. The concentration of ACh in the slices was increased by citrate during incubations with 2.5 mM Ca2+ and 31.2 or 6.2 m M K+, but it was lowered or unchanged by OHC under the same conditions. The release of ACh into the medium was lowered or unchanged by OHC and lowered, unchanged, or increased by citrate. It is concluded that most effects of OHC on the metabolism of ACh can be explained by the inhibition of ATP-citrate lyase; with glucose as the main metabolic substrate, ATP-citrate lyase appears to provide about one-third of the acetyl-CoA used for the synthesis of ACh. Experiments with citrate indicate that an increased supply of citrate may increase the synthesis of ACh. The inhibitory effect of citrate on the synthesis of ACh, observed during incubations without Ca+2, is interpreted to be a consequence of the chelation of intracellular Ca2+; this interpretation is supported by the observation of a similar effect caused by 10 m M EGTA.  相似文献   

12.
Abstract— The loss of GABA, norepinephrine and serotonin and the uptake of GABA (in the presence of 1 mM-GABA) and the effect of GABA on the loss of norepinephrine and serotonin were investigated in rat midbrain slices incubated in media of various compositions. In a medium of low Na+ concentration the loss of serotonin from incubated slices was markedly inhibited while that of norepinephrine and GABA was significantly increased. Conversely the most pronounced loss of serotonin from slices was observed on the addition of ouabain to a medium of a balanced ionic composition. Whereas the loss of serotonin from slices increased in a medium of high K+ content, it was significantly reduced after 45 min incubation in a high K+-low Na+ medium. In all the modified media used, a significant loss of norepinephrine was observed while that of GABA was not affected by the omission of Ca2+ and was slightly reduced in the absence of K+. GABA enhanced the loss of norepinephrine and inhibited that of serotonin in a high-K+ medium and in one with a balanced ionic composition. A deficiency of Na+ in the medium had a differential effect on the loss of norepinephrine and serotonin similar to that observed with 1 mM-GABA. These results suggest that Na+ may be of crucial importance in the release of serotonin from midbrain slices and that an enhancement of the Na+ extrusion mechanism at the synaptosomal level may be involved in the effect of GABA on brain monoamines.  相似文献   

13.
Abstract: The time course of Ca2+-dependent [3H]acetylcholine ([3H]ACh) release and inactivation of 45Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+]o. Under conditions where the intrasynaptosomal stores of releasable [3H]ACh were neither exhausted nor replenished in the course of stimulation, the K+-evoked release consisted of a major (40% of the releasable [3H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+-stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+-stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels.  相似文献   

14.
ACETYLCHOLINE TRANSLOCATION IN SYNAPTIC VESICLE GHOSTS IN VITRO   总被引:5,自引:4,他引:1  
Abstract— Translocation of acetylcholine (ACh) into cholinergic synaptic vesicles depleted of ACh and ATP was studied by Sephadex gel filtration. The hypo-osmotically shocked vesicles become transiently leaky, but retain ACh under iso-osmotic conditions. Intravesicular accumulation of [3H]ACh is due to a simple diffusional equilibration. Addition of 2mM-ATP and Mg2+ to the incubation medium is without effect. When acetylcoenzyme A (AcCoA) and choline (Ch +) are used in place of preformed ACh, the intravesicular concentration of ACh does not exceed that of the newly synthesized, extravesicular ACh. However, in the absence of Na + the quantity of [3H]ACh associated with the vesicles increased, presumably due to ACh binding to ion-exchanger sites in the vesicles.  相似文献   

15.
Abstract— Subcellular fractions were isolated from tissue incubated in [3H]choline with or without the addition of 33 mM-KCl. Radioactive and bioassayable ACh were measured in the synaptosomes, synaptosomal cytoplasm and in the vesicles. After incubation with KCI the vesicles, as isolated, contained ACh of a lower specific activity than the cytoplasmic ACh. Therefore the vesicle fraction as isolated does not represent the source of the high specific activity ACh released upon K+ stimulation. However the vesicle fraction is heterogeneous. Most of the bioassayable ACh but little of the radioactive ACh in the vesicles passed through iso-osmotic Sephadex columns. These results raise the question of the existence of vesicles which contain highly radioactive ACh but which lose it during their isolation by current methods. Different possible forms of heterogeneity are discussed.  相似文献   

16.
Abstract— Synaptic vesicles were prepared from guinea-pig cerebral cortex on a continuous D2O-H2O(1:1)-sucrose gradient and purified in the presence of 1 m m -EGTA by chromatography on columns of glass beads of controlled pore size. As markers, endogenous ACh, NA, dopamine and DβH were measured.
Two distinct populations of synaptic vesicles were recognized between the layers of 0.2–0.3 m - and 0.3–0.5 m -sucrose, which differed from each other both in electron microscopic appearance and transmitter content. The less dense vesicles had a much higher ACh content than the more dense vesicles which were composed mainly of somewhat larger particles with high NA and dopamine content. DβH was found to be present in substantial amounts in guinea-pig cortex and was located in the synaptic vesicle fractions having high CA content.
After glass bead chromatography the vesicle preparations were morphologically homogeneous, practically free from other subcellular elements and were contaminated with each other by not more than 10%
The yields were 0.2 and 0.1 mg protein g cortex−1 tissue for 'cholinergic' and 'adrenergic' vesicle preparations, respectively.  相似文献   

17.
Abstract— (1) Thin slices were prepared from guinea pig cerebral cortex and allowed to incubate in oxygenated bicarbonate-buffered medium for 30 min. Subsequent to that time the slices were made hypoxic by passing 95% N2-5% CO2 through the medium. Hypoxic exposure caused the slices to gain Na+ and to lose K+ ions from the non-inulin space. These shifts were especially pronounced when slices were electrically stimulated during the hypoxic period. Thus, after 30 min of hypoxia plus stimulation, non-inulin Na+ had risen from 30 to 84, μequiv./g wet wt., and non-inulin K+ had fallen from 50·5 to 14·3 μequiv./g wet wt.
(2) The above shifts were in part reversible, but when reoxygenated slices were subsequently electrically stimulated in oxygenated media, they failed to lose K+ or to gain Na+.
(3) The induced inexcitable state could not be attributed to inability of the slices to replenish ATP and phosphocreatine and may indicate an alteration in membrane constituents necessary for preservation of membrane excitability.  相似文献   

18.
Abstract— Slices of cerebral cortex were incubated in medium containing 0·75 or 2·8 mM 45CaCl2, in the presence or absence of 0·01–0·1 m m -ouabain. Ouabain induced accumulation of calcium by slices to a maximum of 4 μmoles/g of tissue/hr (0·75 m m -CaCl2 in the medium) and to 8 μmoles/g of tissue/hr (2·8 m m -CaCl2 in the medium). Accumulation of Ca2+ occurred more slowly than loss of K+ from the slices and more closely resembled the pattern of Na+ uptake.
Mitochondrial fractions isolated from ouabain-treated slices contained significantly more calcium than controls. Inclusion of EDTA in the homogenization medium resulted in decreased amounts of particulate-bound calcium.
The effect of ouabain on accumulation of calcium is discussed with regard to possible relationships to processes of active and passive transport.  相似文献   

19.
ACETYLCHOLINE METABOLISM AND CHOLINE UPTAKE IN CORTICAL SLICES   总被引:4,自引:6,他引:4  
Abstract— The uptake of [14C]choline was studied in cortical slices from rat brain after their incubation in a Krebs-Henseleit medium containing either 4.7 m m -KCl (low K), 25 m m -KCl (high K) or 25 m m -KCl without calcium (Ca free, high K). With 0.84 μ m -[14C]choline in the medium the uptake per gram of tissue was 0.62 nmol after incubation in low K medium, 1.13 nmol after incubation in high K medium and 0.78 nmol after incubation in a Ca free, high K medium. The differences caused by potassium were greater in fraction P2 than in fractions P1 and S2. With 17 and 50 μ m -[14C]choline in the medium greater amounts of [14C]choline were taken up, but the effect of potassium on the uptake almost disappeared. The amount of radioactive material in fraction P2 followed Michaelis-Menten kinetics with K m values of 2.1 and 2.3 μ m after incubation in low and high K medium, respectively. Hemicholinium-3 only slightly inhibited choline uptake from a medium with 0.84 μ m -[14C]choline, but it abolished the extra-uptake induced by high K medium. The radioactivity in the slices consisted mainly of unchanged choline and little ACh was formed after incubation in low K medium, but after incubation in high K medium 50% of the choline taken up was converted into ACh. The hemicholinium-3 sensitive uptake of choline, the conversion of choline into ACh and the synthesis of total ACh, were stimulated about 7–8-fold by potassium. It is concluded that in cortical slices from rat brain all choline used for the synthesis of ACh is supplied by the high-affinity uptake system, of which the activity is geared to the rate of ACh synthesis.  相似文献   

20.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号